Kamyar Keyvanloo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11074303/publications.pdf

Version: 2024-02-01

623734 794594 19 553 14 19 citations g-index h-index papers 19 19 19 760 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of different alumina supports on performance of cobalt Fischer-Tropsch catalysts. Journal of Catalysis, 2018, 359, 92-100.	6.2	57
2	Effect of Support Pretreatment Temperature on the Performance of an Iron Fischer–Tropsch Catalyst Supported on Silica-Stabilized Alumina. Catalysts, 2018, 8, 77.	3.5	16
3	Effect of Drying Temperature on Iron Fischer-Tropsch Catalysts Prepared by Solvent Deficient Precipitation. Journal of Nanomaterials, 2017, 2017, 1-11.	2.7	4
4	Kinetics of Fischer-Tropsch synthesis on supported cobalt: Effect of temperature on CO and H 2 partial pressure dependencies. Catalysis Today, 2016, 270, 9-18.	4.4	19
5	On the kinetics and mechanism of Fischer–Tropsch synthesis on a highly active iron catalyst supported on silica-stabilized alumina. Catalysis Today, 2016, 261, 67-74.	4.4	14
6	Preparation of an Unsupported Iron Fischer–Tropsch Catalyst by a Simple, Novel, Solvent-Deficient Precipitation (SDP) Method. Energy & Samp; Fuels, 2015, 29, 1972-1977.	5.1	13
7	Kinetics of deactivation by carbon of a cobalt Fischer–Tropsch catalyst: Effects of CO and H2 partial pressures. Journal of Catalysis, 2015, 327, 33-47.	6.2	52
8	Effects of preparation variables on an alumina-supported FeCuK Fischer–Tropsch catalyst. Catalysis Science and Technology, 2014, 4, 4289-4300.	4.1	15
9	Kinetic study of the methanol to olefin process on a SAPO-34 catalyst. Frontiers of Chemical Science and Engineering, 2014, 8, 306-311.	4.4	8
10	Highly active and stable supported iron Fischer–Tropsch catalysts: Effects of support properties and SiO2 stabilizer on catalyst performance. Journal of Catalysis, 2014, 319, 220-231.	6.2	32
11	Supported Iron Fischer–Tropsch Catalyst: Superior Activity and Stability Using a Thermally Stable Silica-Doped Alumina Support. ACS Catalysis, 2014, 4, 1071-1077.	11.2	72
12	Acid site properties of thermally stable, silica-doped alumina as a function of silica/alumina ratio and calcination temperature. Applied Catalysis A: General, 2014, 482, 16-23.	4.3	29
13	Effect of iron, phosphorous, and Si/Al on HZSM-5 catalytic performance and stability by response surface methodology. Journal of Analytical and Applied Pyrolysis, 2013, 104, 695-702.	5.5	7
14	Kinetic study of steam catalytic cracking of naphtha on a Fe/ZSM-5 catalyst. Fuel, 2013, 109, 432-438.	6.4	36
15	The effect of Fe, P and Si/Al molar ratio on stability of HZSM-5 catalyst in naphtha thermal-catalytic cracking to light olefins. Catalysis Communications, 2012, 27, 114-118.	3.3	32
16	Genetic algorithm model development for prediction of main products in thermal cracking of naphtha: Comparison with kinetic modeling. Chemical Engineering Journal, 2012, 209, 255-262.	12.7	44
17	A novel CeO2 supported on carbon nanotubes coated with SiO2 catalyst for catalytic cracking of naphtha. Applied Catalysis A: General, 2012, 417-418, 53-58.	4.3	27
18	Modeling of Thermal Cracking of Heavy Liquid Hydrocarbon: Application of Kinetic Modeling, Artificial Neural Network, and Neuro-Fuzzy Models. Industrial & Engineering Chemistry Research, 2011, 50, 1536-1547.	3.7	55

#	Article	lF	CITATIONS
19	Experimental study and optimization of heavy liquid hydrocarbon thermal cracking to light olefins by response surface methodology. Korean Journal of Chemical Engineering, 2010, 27, 1170-1176.	2.7	21