
Subbukalai Vijayakumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11072922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and characterization of Sr-doped CdO nanoplatelets for supercapacitor applications. Journal of Materials Science: Materials in Electronics, 2022, 33, 8426-8434.	2.2	11
2	Facile Synthesis of Zn-Co-S Nanostrip Cluster Arrays on Ni Foam for High-Performance Hybrid Supercapacitors. Nanomaterials, 2021, 11, 3209.	4.1	7
3	Controlled synthesis and growth mechanism of zinc cobalt sulfide rods on Ni-foam for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 2019, 71, 250-259.	5.8	66
4	<i>In situ</i> preparation of MgCo ₂ O ₄ nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors. Dalton Transactions, 2018, 47, 6722-6728.	3.3	58
5	Cu-Zn-Co oxide nanoflakes on Ni-foam as a binder free electrode for energy storage applications. Materials Letters, 2018, 219, 143-147.	2.6	12
6	CuCo 2 O 4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications. Electrochimica Acta, 2017, 238, 99-106.	5.2	121
7	Cerium oxide mixed LaMnO3 nanoparticles as the negative electrode for aqueous asymmetric supercapacitor devices. Materials Chemistry and Physics, 2017, 199, 543-551.	4.0	80
8	Porous thin layered nanosheets assembled ZnCo2O4 grown on Ni-foam as an efficient electrode material for hybrid supercapacitor applications. International Journal of Hydrogen Energy, 2017, 42, 3122-3129.	7.1	70
9	Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode. Applied Surface Science, 2016, 390, 202-208.	6.1	127
10	Synthesis of Ag Anchored Ag ₃ VO ₄ Stacked Nanosheets: Toward a Negative Electrode Material for High-Performance Asymmetric Supercapacitor Devices. Journal of Physical Chemistry C, 2016, 120, 18963-18970.	3.1	22
11	Synthesis of Zn ₃ V ₂ O ₈ nanoplatelets for lithium-ion battery and supercapacitor applications. RSC Advances, 2015, 5, 91822-91828.	3.6	90
12	Hierarchical CuCo2O4 nanobelts as a supercapacitor electrode with high areal and specific capacitance. Electrochimica Acta, 2015, 182, 979-986.	5.2	268
13	Biopolymer-Assisted Synthesis of λ-MnO ₂ Nanoparticles As an Electrode Material for Aqueous Symmetric Supercapacitor Devices. Industrial & Engineering Chemistry Research, 2013, 52, 18262-18268.	3.7	69
14	Supercapacitor Studies on NiO Nanoflakes Synthesized Through a Microwave Route. ACS Applied Materials & Interfaces, 2013, 5, 2188-2196.	8.0	542
15	Synthesis of Mn ₃ O ₄ /Amorphous Carbon Nanoparticles as Electrode Material for High Performance Supercapacitor Applications. Energy & Fuels, 2013, 27, 3508-3515.	5.1	156
16	Porous NiO/C Nanocomposites as Electrode Material for Electrochemical Supercapacitors. ACS Sustainable Chemistry and Engineering, 2013, 1, 1110-1118.	6.7	119