List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11069691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beachrocks record Holocene events, including natural disasters. Carbonates and Evaporites, 2011, 26, 97-109.	0.4	11
2	Holocene chronostratigraphic beachrocks and their geologic climatic significance. Geochemical Society Special Publications, 2004, , 125-142.	0.1	5
3	Microtextural properties of ooids in the middle Jurassic-lower Cretaceous, central taurus carbonate platform, Antalya, Turkey. Carbonates and Evaporites, 2001, 16, 1-7.	0.4	7
4	Petrophysical facies of the ordovician red river formation, Williston basin, USA. Carbonates and Evaporites, 2001, 16, 71-92.	0.4	6
5	A prelimennary study: Celestite-bearing gypsum in the Tertiary Sivas basin, central-eastern Turkey. Carbonates and Evaporites, 2001, 16, 93-101.	0.4	14
6	Late Cambrian cabbage-head stromatolites from Saratoga Springs, New York, USA. Carbonates and Evaporites, 2000, 15, 37-48.	0.4	4
7	Subsurface arbuckle group (cambro-ordovician) in the Bowman #4 Well of the Wilburton field in the Arkoma Basin, Oklahoma: Depositional facies, diagenetic signatures, petrophysical aspects, and economic potential. Carbonates and Evaporites, 2000, 15, 49-80.	0.4	5
8	Formation of lithified micritic laminae in modern marine stromatolites: From study of Red Sea stromatolites: Perspective. Carbonates and Evaporites, 2000, 15, 165-168.	0.4	2
9	Metal pollution in carbonate sediments of main basin of Mariute Lake, Alexandria, Egypt. Carbonates and Evaporites, 2000, 15, 169-194.	0.4	4
10	Coral reefs, Sinai, Egypt: A historical perspective. Carbonates and Evaporites, 1998, 13, 66-68.	0.4	0
11	Diagenetic history and geochemistry of the Beekmantown-Group dolomites (Sauk Sequence) of New York, USA. Carbonates and Evaporites, 1998, 13, 69-85.	0.4	4
12	Rapidity of marine carbonate cementation $\hat{a} \in$ " implications for carbonate diagenesis and sequence stratigraphy: perspective. Sedimentary Geology, 1998, 119, 1-4.	1.0	36
13	Freshwater ostracodes from upper Middle Devonian fluvial facies, Catskill Mountains, New York. Journal of Paleontology, 1998, 72, 485-490.	0.5	14
14	Mississippi valley-type mineralization in the Silurian paleoaquifer, central appalachians. Chemical Geology, 1997, 138, 127-134.	1.4	7
15	Dissolution-collapse breccias and paleokarst resulting from dissolution of evaporite rocks, especially sulfates. Carbonates and Evaporites, 1997, 12, 53-63.	0.4	45
16	Sedimentation and facies analysis of theGirvanella-constituted oncolitic shoals and associated lithofacies in the middle Ordovician Antelope Valley Limestone, central Nevada, USA. Carbonates and Evaporites, 1997, 12, 134-156.	0.4	3
17	Aragonite cements around methane seeps: Comment. Carbonates and Evaporites, 1997, 12, 157-158.	0.4	1
18	δ13C excursion in the end-proterozoic strata of the Vindhyan basin (Central India): Its chronostratigraphic significance. Carbonates and Evaporites, 1996, 11, 206-212.	0.4	19

#	Article	IF	CITATIONS
19	Early ordovician microbial reef mounds of the tribes Hill formation, Mohawk Valley, New York. Carbonates and Evaporites, 1996, 11, 226-240.	0.4	4
20	Timing- and origin of dedolomite in upper Wappinger Group (Lower Ordovician) strata, southeastern New York. Carbonates and Evaporites, 1996, 11, 113-133.	0.4	8
21	Strontium-isotopic signatures reflect an origin of dolomite by fresh-water effluent: The pine plains formation (Wappinger Group, Cambrian) of southeastern New York. Carbonates and Evaporites, 1996, 11, 134-140.	0.4	6
22	Yucatán subsurface stratigraphy: Implications and constraints for the Chicxulub impact: Discussion. Carbonates and Evaporites, 1996, 11, 141-142.	0.4	5
23	Early submarine cementation in fore-reef carbonate sediments, Barbados, West Indies. Sedimentology, 1995, 42, 707-707.	1.6	1
24	Diverse origin of modern dolomite in the Levant. Carbonates and Evaporites, 1995, 10, 65-78.	0.4	14
25	Upper Cambrian-Lower Ordovician (Sauk) platform carbonates of the northern Appalachian (Gondwana) passive margin. Carbonates and Evaporites, 1994, 9, 143-150.	0.4	13
26	Depositional controls on Lower Carboniferous microbial buildups, eastern Midland Valley of Scotland. Sedimentology, 1993, 40, 1171-1171.	1.6	2
27	Ordered, stoichiometric and sucrosic dolomitization: A result of prolonged exposure to warm sea water: Proterozoic Chanda Limestone, Adilabad, India. Carbonates and Evaporites, 1993, 8, 109-117.	0.4	1
28	Carbonate storm deposits (Tempestites) of Middle to Upper Cambrian age in the Helan Mountains, northwest China. Carbonates and Evaporites, 1993, 8, 181-190.	0.4	20
29	Discussion of cathodoluminescence of Recent biogenic carbonates: an environmental and ontogenetic fingerprint. Geological Magazine, 1993, 130, 269-270.	0.9	4
30	Petrophysical analysis of modern reef rocks. Carbonates and Evaporites, 1992, 7, 11-20.	0.4	2
31	Closely spaced twin lamellae in limestones as an indicator of deep-burial diagenesis. Carbonates and Evaporites, 1992, 7, 38-47.	0.4	2
32	Dolomite-rock textures and secondary porosity development in Ellenburger Group carbonates (Lower) Tj ETQqO) 0 rgBT /0 1.9	Dverlock 10 T
33	Petrophysical characteristics of holocene beachrock. Carbonates and Evaporites, 1990, 5, 223-243.	0.4	13
34	Anthracite and Concentrations of Alkaline Feldspar (Microcline) in Flat-Lying Undeformed Paleozoic Strata: A Key to Large-Scale Vertical Crustal Uplift. , 1990, , 16-28.		2
35	A brief sketch of Edward Hitchcock (1793–1864). , 1989, , 14-20.		3

#	Article	IF	CITATIONS
37	The Taconic controversies. , 1989, , 32-38.		1
38	New York State Troy, New York and the Van Rensselaers. , 1989, , 39-43.		1
39	Amos Eaton and early New York State geology. , 1989, , 43-48.		0
40	Pennsylvania. , 1989, , 84-93.		0
41	New England mapping Boston: An informal history. , 1989, , 4-13.		0
42	Williams College and the foundation of geology in western Massachusetts and New York. , 1989, , 20-31.		0
43	Geology and the Saratoga Campaign of 1777. , 1989, , 38-39.		0
44	Case history of deep-burial sulfide mineralization in the northern Appalachian Basin. Carbonates and Evaporites, 1989, 4, 231-241.	0.4	2
45	Petrophysics of a dolostone reservoir: San Andres Formation (Permian), west Texas. Carbonates and Evaporites, 1989, 4, 45-119.	0.4	10
46	Recent developments in Carboniferous geology: some comments. Proceedings of the Geologists Association, 1989, 100, 239-240.	0.6	3
47	Substitution of simulated well-cuttings for core plugs in the petrophysical analysis of dolostones: Permian San Andres Formation, Texas. Carbonates and Evaporites, 1988, 2, 95-100.	0.4	6
48	Deposition and diagenesis of the windward reef of Enewetak Atoll. Carbonates and Evaporites, 1988, 2, 157-179.	0.4	7
49	Reservoir characterization, porosity, and recovery efficiency of deeply-buried paleozoic carbonates: Examples from Oklahoma, Texas and New Mexico. Carbonates and Evaporites, 1988, 3, 33-52.	0.4	14
50	Vertical movements of the crust: Case histories from the northern Appalachian Basin. Geology, 1987, 15, 1130.	2.0	49
51	Deep-burial diagenesis: Its implications for vertical movements of the crust, uplift of the lithosphere and isostatic unroofing—A review. Sedimentary Geology, 1987, 54, 165-167.	1.0	0
52	Deep-burial diagenesis: Its implications for vertical movements of the crust, uplift of the lithosphere and isostatic unroofing—A review. Sedimentary Geology, 1987, 50, 67-94.	1.0	42
53	The sedimentology of the Dead Sea. Carbonates and Evaporites, 1987, 2, 43-57.	0.4	27
54	Suggestions for contributors to carbonates and evaporites. Carbonates and Evaporites, 1986, 1, 2-6.	0.4	0

#	Article	IF	CITATIONS
55	Dolomites formed under conditions of deep burial: Hunton Group carbonate rocks (Upper Ordovician) Tj ETQq1 I 1986, 1, 61-73.	0.784314 0.4	l rgBT /Over 10
56	Hypersaline Sea-marginal Flats of the Gulfs of Elat and Suez. Ecological Studies, 1985, , 103-135.	0.4	8
57	Mineralogical and paramorphic textural changes generated in modern ooids by heat and compaction. Geology, 1983, 11, 596.	2.0	3
58	Comment and Reply on â€~Time-temperature-burial significance of Devonian anthracite implies former great (â~'6.5 km) depth of burial of Catskill Mountains, New York'. Geology, 1983, 11, 123.	2.0	7
59	Geological Heterogeneities Important to Future Enhanced Recovery in Carbonate Reservoirs of Upper Ordovician Red River Formation at Cabin Creek Field, Montana. Society of Petroleum Engineers Journal, 1982, 22, 429-444.	0.9	12
60	Time-temperature-burial significance of Devonian anthracite implies former great (â^1⁄46.5 km) depth of burial of Catskill Mountains, New York. Geology, 1982, 10, 93.	2.0	49
61	Carbonate deformation mechanisms in the world's deepest wells (~ 9 km). Tectonophysics, 1981, 74, T15-T19.	0.9	13
62	An unusual occurrence of surficial anhydrite in a moist temperate zone: Example from the lockport formation (Middle Silurian) of New York. Sedimentary Geology, 1981, 29, 125-131.	1.0	15
63	Textures of sandstones and carbonate rocks in the world's deepest wells (in excess of 30,000 ft. or 9.1) Tj ETQq1	1 _{1.0} 78431	l4rgBT /Ove
64	Evaluation of cold-water carbonates as a possible paleoclimatic indicator. Sedimentary Geology, 1981, 28, 1-28.	1.0	35
65	Address of the retiring President of the International Association of Sedimentologists: Differences in size distributions of populations of particles among sands of various origins. Sedimentology, 1979, 26, 3-32.	1.6	175
66	Patch or pinnacle reefs of Cretaceous age exposed on western margin of Dead Sea (Israel). Sedimentology, 1979, 26, 143-149.	1.6	2
67	Differences in size distributions of populations of particles among sands of various origins: addendum to IAS Presidential Address. Sedimentology, 1979, 26, 859-862.	1.6	71
68	Intermittently emergent shelf carbonates: an example from the Cambro-Ordovician of eastern New York State. Sedimentary Geology, 1977, 19, 81-106.	1.0	25
69	Alpha emitters in a coral from Bikini lagoon: A testimony to nuclear blasts in the Western Pacific. Geo Journal, 1977, 1, 91-96.	1.7	0
70	Depositional environments of Upper Miocene (Messinian) evaporites of Sicily as determined from analysis of intercalated carbonates. Sedimentology, 1976, 23, 255-270.	1.6	15
71	Depositional environments of Upper Miocene (Messinian) evaporite deposits of the Sicilian Basin*. Sedimentology, 1976, 23, 729-760.	1.6	169
72	Effect of man's activities on distribution of trace elements in sub-bottom sediments of Lake George, New York*. Sedimentology, 1974, 21, 473-478.	1.6	11

#	Article	IF	CITATIONS
73	Distribution and nature of incorporation of trace elements in modern aragonitic corals*. Sedimentology, 1973, 20, 47-64.	1.6	139
74	Quantitative analysis of calcite and Mg-calcite by X-ray diffraction: effect of grinding on peak height and peak area. Sedimentology, 1973, 20, 437-444.	1.6	37
75	Incorporation of uranium in modern corals. Sedimentology, 1973, 20, 523-528.	1.6	46
76	Fresh Water Iron-Manganese Nodules in Lake George, New York. Bulletin of the Geological Society of America, 1971, 82, 101.	1.6	28
77	MICRITIC ENVELOPES OF CARBONATE GRAINS ARE NOT EXCLUSIVELY OF PHOTOSYNTHETIC ALGAL ORIGIN. Sedimentology, 1971, 16, 89-96.	1.6	51
78	Coincidence of High Sea Level with Cold Climate and Low Sea Level with Warm Climate: Evidence from Carbonate Rocks. Bulletin of the Geological Society of America, 1970, 81, 2457.	1.6	4
79	Position of Regional Carbonate/Noncarbonate Boundary in Nearshore Sediments Along a Coast: Possible Climatic Indicator. Bulletin of the Geological Society of America, 1969, 80, 1789.	1.6	2
80	Trace Elements as Possible Environmental Indicators in Carbonate Sediments <xref <br="" ref-type="fn">rid="ch12fn2"> ¹ </xref> . , 1969, , .		10
81	Chapter 6 Origin and Occurrence of Dolostones. Developments in Sedimentology, 1967, , 267-348.	0.5	56
82	Chapter 5 Origin and Occurrence of Limestones. Developments in Sedimentology, 1967, 9, 169-265.	0.5	11
83	Occurrence of Talc as a Clay Mineral in Sedimentary Rocks. Nature, 1965, 207, 283-284.	13.7	9
84	IN DEFENCE OF POINT COUNTING ANALYSIS, A DISCUSSION Sedimentology, 1965, 4, 247-249.	1.6	5
85	IN DEFENCE OF POINT COUNTING ANALYSIS: HYPOTHETICAL EXPERIMENTS VERSUS REAL ROCKS. Sedimentology, 1965, 4, 252-253.	1.6	3
86	OCCURRENCE AND STABILITY RELATIONSHIPS OF ARAGONITE, HIGH-MAGNESIAN CALCITE, AND LOW-MAGNESIAN CALCITE UNDER DEEP-SEA CONDITIONS. Bulletin of the Geological Society of America, 1965, 76, 1191.	1.6	61
87	On Sorting, Sorting Coefficients, and the Lognormality of the Grain-Size Distribution of Sandstones. Journal of Geology, 1962, 70, 737-753.	0.7	176
88	Determination of Sieve-Size Distribution from Thin-Section Data for Sedimentary Petrological Studies. Journal of Geology, 1958, 66, 394-416.	0.7	154