
Adam Z Stieg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1106952/publications.pdf Version: 2024-02-01

ADAM 7 STIEC

#	Article	IF	CITATIONS
1	Pacemaker translocations and power laws in 2D stem cell-derived cardiomyocyte cultures. PLoS ONE, 2022, 17, e0263976.	2.5	2
2	Cardio PyMEA: A user-friendly, open-source Python application for cardiomyocyte microelectrode array analysis. PLoS ONE, 2022, 17, e0266647.	2.5	1
3	Programmable Fading Memory in Atomic Switch Systems for Error Checking Applications. Natural Computing Series, 2021, , 273-303.	2.2	1
4	Spoken Digit Classification by In-Materio Reservoir Computing With Neuromorphic Atomic Switch Networks. Frontiers in Nanotechnology, 2021, 3, .	4.8	43
5	MNIST classification using Neuromorphic Nanowire Networks. , 2021, , .		7
6	Nanoscale neuromorphic networks and criticality: a perspective. Journal of Physics Complexity, 2021, 2, 042001.	2.2	16
7	Reservoir Computing with Neuromemristive Nanowire Networks. , 2020, , .		20
8	Monomolecular covalent honeycomb nanosheets produced by surface-mediated polycondensation between 1,3,5-triamino benzene and benzene-1,3,5-tricarbox aldehyde on Au(111). Nanoscale Advances, 2020, 2, 3202-3208.	4.6	4
9	Acoustofluidic sonoporation for gene delivery to human hematopoietic stem and progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10976-10982.	7.1	72
10	Harnessing adaptive dynamics in neuro-memristive nanowire networks for transfer learning. , 2020, , .		9
11	Neuromorphic Information Processing with Nanowire Networks. , 2020, , .		9
12	Emergent dynamics of neuromorphic nanowire networks. Scientific Reports, 2019, 9, 14920.	3.3	93
13	Hybrid Transparent PEDOT:PSS Molybdenum Oxide Battery-like Supercapacitors. ACS Applied Energy Materials, 2019, 2, 4629-4639.	5.1	50
14	Self-organization and Emergence ofÂDynamical Structures inÂNeuromorphic Atomic SwitchÂNetworks. , 2019, , 391-427.		4
15	Using an Engineered Galvanic Redox System to Generate Positive Surface Potentials that Promote Osteogenic Functions. ACS Applied Materials & Interfaces, 2018, 10, 15449-15460.	8.0	14
16	Atomic switch networks as complex adaptive systems. Japanese Journal of Applied Physics, 2018, 57, 03ED02.	1.5	27
17	Emergent brain-like complexity from nanowire atomic switch networks: Towards neuromorphic synthetic intelligence. , 2018, , .		9
18	Layer-by-layer hybrid chemical doping for high transmittance uniformity in graphene-polymer flexible transparent conductive nanocomposite. Scientific Reports, 2018, 8, 10259.	3.3	18

ADAM Z STIEG

#	Article	IF	CITATIONS
19	Two dimensional electrophysiological characterization of human pluripotent stem cell-derived cardiomyocyte system. Scientific Reports, 2017, 7, 43210.	3.3	35
20	Atomic force microscopy correlates antimetastatic potentials of HepG2 cell line with its redox/energy status: effects of curcumin and Khaya senegalensis. Journal of Integrative Medicine, 2017, 15, 214-230.	3.1	13
21	Glucose inhibits cardiac muscle maturation through nucleotide biosynthesis. ELife, 2017, 6, .	6.0	142
22	Non-temporal logic performance of an atomic switch network. , 2017, , .		3
23	Abstract 346: Glucose Inhibits Cardiomyocyte Maturation Through Nucleotide Biosynthesis. Circulation Research, 2017, 121, .	4.5	0
24	Self-Organization and Emergence of Dynamic Systems. , 2016, , 163-180.		3
25	Nanoarchitectonic atomic switch networks for unconventional computing. Japanese Journal of Applied Physics, 2016, 55, 1102B2.	1.5	47
26	Morphic atomic switch networks for beyond-Moore computing architectures. , 2015, , .		0
27	Protein Adsorption Alters Hydrophobic Surfaces Used for Suspension Culture of Pluripotent Stem Cells. Journal of Physical Chemistry Letters, 2015, 6, 388-393.	4.6	3
28	Atmospheric and Aqueous Deposition of Polycrystalline Metal Oxides Using Mist-CVD for Highly Efficient Inverted Polymer Solar Cells. Nano Letters, 2015, 15, 4948-4954.	9.1	9
29	The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nature Communications, 2015, 6, 7269.	12.8	404
30	Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nature Communications, 2015, 6, 7430.	12.8	233
31	Atomic switch networks—nanoarchitectonic design of a complex system for natural computing. Nanotechnology, 2015, 26, 204003.	2.6	66
32	Multistate resistive switching in silver nanoparticle films. Science and Technology of Advanced Materials, 2015, 16, 045004.	6.1	26
33	Graphene-Assisted Solution Growth of Vertically Oriented Organic Semiconducting Single Crystals. ACS Nano, 2015, 9, 9486-9496.	14.6	46
34	Mitochondrial Ca2+ uptake by the voltage-dependent anion channel 2 regulates cardiac rhythmicity. ELife, 2015, 4, .	6.0	67
35	Self-Organization and Emergence of Dynamic Systems. , 2015, , 1-14.		0
36	Self-organization and Emergence of Dynamical Structures in Neuromorphic Atomic Switch Networks. , 2014, , 173-209.		12

ADAM Z STIEG

#	Article	IF	CITATIONS
37	Thermodynamic Self-Assembly of Two-Dimensional <i>π</i> -Conjugated Metal–Porphyrin Covalent Organic Frameworks by "On-Site―Equilibrium Polymerization. Journal of Nanoscience and Nanotechnology, 2014, 14, 2211-2216.	0.9	16
38	Positional selectivity of reversible azomethine condensation reactions at solid/liquid interfaces leading to supramolecule formation. Journal of Electroanalytical Chemistry, 2014, 716, 145-149.	3.8	13
39	Self-organized atomic switch networks. Japanese Journal of Applied Physics, 2014, 53, 01AA02.	1.5	20
40	Benchtop Fabrication of Memristive Atomic Switch Networks. Journal of Nanoscience and Nanotechnology, 2014, 14, 2792-2798.	0.9	7
41	Morphological Transitions from Dendrites to Nanowires in the Electroless Deposition of Silver. Crystal Growth and Design, 2013, 13, 465-469.	3.0	46
42	Amplification of Conformational Effects via tert-Butyl Groups: Hexa-tert-butyl Decacyclene on Cu(100) at Room Temperature. Langmuir, 2013, 29, 7309-7317.	3.5	5
43	Self-Assembling Semiconducting Polymers—Rods and Gels from Electronic Materials. ACS Nano, 2013, 7, 962-977.	14.6	25
44	A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology, 2013, 24, 384004.	2.6	178
45	Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells. Science and Technology of Advanced Materials, 2013, 14, 025003.	6.1	60
46	Abstract 134: Rigid Microenvironments Promote Cardiac Differentiation Of Mouse And Human Embryonic Stem Cells. Circulation Research, 2013, 113, .	4.5	0
47	<i>In Situ</i> STM Investigation of Aromatic Poly(azomethine) Arrays Constructed by "On-Site― Equilibrium Polymerization. Langmuir, 2012, 28, 13844-13851.	3.5	31
48	Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials. Nanotechnology, 2012, 23, 235701.	2.6	7
49	Neuromorphic Atomic Switch Networks. PLoS ONE, 2012, 7, e42772.	2.5	146
50	Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals. Journal of the American Chemical Society, 2012, 134, 9251-9262.	13.7	99
51	Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition. Nanoscale, 2012, 4, 3075.	5.6	13
52	Emergent Criticality in Complex Turing Bâ€Type Atomic Switch Networks. Advanced Materials, 2012, 24, 286-293.	21.0	182
53	Unorganized Machines: Emergent Criticality in Complex Turing Bâ€∓ype Atomic Switch Networks (Adv.) Tj ETQq1	1 0.7843 21.0	14 rgBT /O
54	Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles. Applied	3.3	138

Physics Letters, 2011, 98, .

ADAM Z STIEG

#	Article	IF	CITATIONS
55	Thermodynamically Controlled Self-Assembly of Covalent Nanoarchitectures in Aqueous Solution. ACS Nano, 2011, 5, 3923-3929.	14.6	162
56	Construction of Robust Bioâ€nanotubes using the Controlled Selfâ€Assembly of Component Proteins of Bacteriophage T4. Small, 2010, 6, 1873-1879.	10.0	41
57	Protein engineering: Construction of Robust Bio-nanotubes using the Controlled Self-Assembly of Component Proteins of Bacteriophage T4 (Small 17/2010). Small, 2010, 6, n/a-n/a.	10.0	0
58	Nanocharacterization in Dentistry. International Journal of Molecular Sciences, 2010, 11, 2523-2545.	4.1	46
59	Heteroleptic Copper Switches. Journal of the American Chemical Society, 2010, 132, 15987-15996.	13.7	20
60	Surface Immobilized Heteroleptic Copper Compounds as State Variables that Show Negative Differential Resistance. Journal of Physical Chemistry Letters, 2010, 1, 589-593.	4.6	15
61	A low noise all-fiber interferometer for high resolution frequency modulated atomic force microscopy imaging in liquids. Review of Scientific Instruments, 2010, 81, 023703.	1.3	39
62	A Molecular-Rotor Device for Nonvolatile High-Density Memory Applications. IEEE Electron Device Letters, 2010, 31, 1047-1049.	3.9	10
63	Room temperature negative differential resistance of a monolayer molecular rotor device. Applied Physics Letters, 2009, 95, 093503.	3.3	5
64	A nano-scale molecular rotor device for high density memory application. , 2009, , .		0
65	Folding of a donor-acceptor polyrotaxane by using noncovalent bonding interactions. Proceedings of the United States of America, 2008, 105, 6514-6519.	7.1	84
66	A flexible, highly stable electrochemical scanning probe microscope for nanoscale studies at the solid-liquid interface. Review of Scientific Instruments, 2008, 79, 103701.	1.3	13
67	Observations of image contrast and dimerization of decacyclene by low temperature scanning tunneling microscopy. Journal of Chemical Physics, 2007, 127, 174703.	3.0	4
68	Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy. Review of Scientific Instruments, 2007, 78, 036110.	1.3	16
69	Identification and preliminary clinical evaluation of a 50.8-kDa serum marker for prostate cancer. Urology, 2003, 61, 1261-1265.	1.0	38
70	Mass Spectroscopy as a Discovery Tool for Identifying Serum Markers for Prostate Cancer. Clinical Chemistry, 2001, 47, 1924-1926.	3.2	17