Lisa Chakrabarti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11068623/publications.pdf

Version: 2024-02-01

331670 395702 2,178 36 21 33 h-index citations g-index papers 38 38 38 2943 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sox-positive cell population in the adult cerebellum increases upon tissue degeneration. Experimental Neurology, 2022, 348, 113950.	4.1	2
2	Oxysterols and Oxysterol Sulfates in Alzheimer's Disease Brain and Cerebrospinal Fluid. Journal of Alzheimer's Disease, 2022, 87, 1527-1536.	2.6	6
3	Proteomic analysis of the ATP synthase interactome in notothenioids highlights a pathway that inhibits ceruloplasmin production. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R181-R192.	1.8	3
4	The dysregulated Pink1- Drosophila mitochondrial proteome is partially corrected with exercise. Aging, 2021, 13, 14709-14728.	3.1	3
5	Serum Cytokine Profile, Beta-Hexosaminidase A Enzymatic Activity and GM2 Ganglioside Levels in the Plasma of a Tay-Sachs Disease Patient after Cord Blood Cell Transplantation and Curcumin Administration: A Case Report. Life, 2021, 11, 1007.	2.4	2
6	Low-Power Sonication Can Alter Extracellular Vesicle Size and Properties. Cells, 2021, 10, 2413.	4.1	25
7	Exercising D. melanogaster Modulates the Mitochondrial Proteome and Physiology. The Effect on Lifespan Depends upon Age and Sex. International Journal of Molecular Sciences, 2021, 22, 11606.	4.1	О
8	ATP synthase and Alzheimer's disease: putting a spin on the mitochondrial hypothesis. Aging, 2020, 12, 16647-16662.	3.1	33
9	Sex specific inflammatory profiles of cerebellar mitochondria are attenuated in Parkinson's disease. Aging, 2020, 12, 17713-17737.	3.1	6
10	A comparison of the mitochondrial proteome and lipidome in the mouse and long-lived Pipistrelle bats. Aging, 2019, 11, 1664-1685.	3.1	11
11	Exposure to the ROCK inhibitor fasudil promotes gliogenesis of neural stem cells in vitro. Stem Cell Research, 2018, 28, 75-86.	0.7	11
12	New Approaches to Tay-Sachs Disease Therapy. Frontiers in Physiology, 2018, 9, 1663.	2.8	68
13	Rapid and accurate analysis of stem cell-derived extracellular vesicles with super resolution microscopy and live imaging. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1891-1900.	4.1	72
14	Elevated 5hmC levels characterize DNA of the cerebellum in Parkinson's disease. Npj Parkinson's Disease, 2017, 3, 6.	5.3	26
15	Mouse mitochondrial lipid composition is defined by age in brain and muscle. Aging, 2017, 9, 986-998.	3.1	37
16	Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration. PLoS ONE, 2016, 11, e0157405.	2.5	78
17	Analysis of Mitochondrial haemoglobin in Parkinson's disease brain. Mitochondrion, 2016, 29, 45-52.	3.4	22
18	Defining a role for hemoglobin in Parkinson's disease. Npj Parkinson's Disease, 2016, 2, 16021.	5.3	22

#	Article	IF	Citations
19	Mitochondrial proteomic profiling reveals increased carbonic anhydrase II in aging and neurodegeneration. Aging, 2016, 8, 2425-2436.	3.1	33
20	Proteomic profiling of mitochondria: what does it tell us about the ageing brain?. Aging, 2016, 8, 3161-3179.	3.1	24
21	A mitochondrial location for haemoglobinsâ€"Dynamic distribution in ageing and Parkinson's disease. Mitochondrion, 2014, 14, 64-72.	3.4	46
22	Deletion of the Chd6 exon 12 affects motor coordination. Mammalian Genome, 2010, 21, 130-142.	2.2	25
23	Mitochondrial Dysfunction in NnaD Mutant Flies and Purkinje Cell Degeneration Mice Reveals a Role for Nna Proteins in Neuronal Bioenergetics. Neuron, 2010, 66, 835-847.	8.1	40
24	Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death. Molecular Brain, 2009, 2, 24.	2.6	95
25	The zinc-binding domain of Nna1 is required to prevent retinal photoreceptor loss and cerebellar ataxia in Purkinje cell degeneration (pcd) mice. Vision Research, 2008, 48, 1999-2005.	1.4	36
26	The Purkinje cell degeneration 5J mutation is a single amino acid insertion that destabilizes $Nna1$ protein. Mammalian Genome, 2006, 17 , $103-110$.	2.2	35
27	Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature Genetics, 2005, 37, 806-808.	21.4	752
28	Tau Protein in Frontotemporal Dementia Linked to Chromosome 3 (FTD-3). Journal of Neuropathology and Experimental Neurology, 2003, 62, 878-882.	1.7	36
29	Genetic Linkage Analysis of Prostate Cancer Families to Xq27–28. Human Heredity, 2001, 51, 107-113.	0.8	46
30	Linkage analysis of 150 high-risk prostate cancer families at 1q24-25., 2000, 18, 251-275.		43
31	A Genomic Scan of Families with Prostate Cancer Identifies Multiple Regions of Interest. American Journal of Human Genetics, 2000, 67, 100-109.	6.2	88
32	Evidence for a Rare Prostate Cancer–Susceptibility Locus at Chromosome 1p36. American Journal of Human Genetics, 1999, 64, 776-787.	6.2	292
33	Analysis of Chromosome 1q42.2-43 in 152 Families with High Risk of Prostate Cancer. American Journal of Human Genetics, 1999, 64, 1087-1095.	6.2	70
34	Expression of the murine homologue of FMR2 in mouse brain and during development. Human Molecular Genetics, 1998, 7, 441-448.	2.9	29
35	Population genetics of the FRAXE and FRAXF GCC repeats, and a novel CGG repeat, in Xq28. , 1997, 73, 463-469.		8
36	A Candidate Gene for Mild Mental Handicap at the Fraxe Fragile Site. Human Molecular Genetics, 1996, 5, 275-282.	2.9	53