Sergei A Nedospasov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11068332/publications.pdf

Version: 2024-02-01

89 papers 6,982 citations

43 h-index 81 g-index

89 all docs 89 docs citations

89 times ranked 10183 citing authors

#	Article	IF	Citations
1	Therapeutic Potential of Combining IL-6 and TNF Blockade in a Mouse Model of Allergic Asthma. International Journal of Molecular Sciences, 2022, 23, 3521.	4.1	8
2	TNF hampers intestinal tissue repair in colitis by restricting IL-22 bioavailability. Mucosal Immunology, 2022, 15, 698-716.	6.0	10
3	Macrophages acquire a TNF-dependent inflammatory memory in allergic asthma. Journal of Allergy and Clinical Immunology, 2022, 149, 2078-2090.	2.9	31
4	LTα, TNF, and ILC3 in Peyer's Patch Organogenesis. Cells, 2022, 11, 1970.	4.1	4
5	Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity, 2021, 54, 468-483.e5.	14.3	56
6	Dual Role of TNF and LTα in Carcinogenesis as Implicated by Studies in Mice. Cancers, 2021, 13, 1775.	3.7	12
7	Novel Anti-Cytokine Strategies for Prevention and Treatment of Respiratory Allergic Diseases. Frontiers in Immunology, 2021, 12, 601842.	4.8	18
8	Current Perspectives on the Role of TNF inÂHematopoiesis Using Mice With Humanization of TNF/LT System. Frontiers in Immunology, 2021, 12, 661900.	4.8	4
9	Fibroblasts upregulate expression of adhesion molecules and promote lymphocyte retention in 3D fibroin/gelatin scaffolds. Bioactive Materials, 2021, 6, 3449-3460.	15.6	8
10	TNF- \hat{l}_{\pm} in T lymphocytes attenuates renal injury and fibrosis during nephrotoxic nephritis. American Journal of Physiology - Renal Physiology, 2020, 318, F107-F116.	2.7	16
11	The structure of myeloid cellâ€specific TNF inhibitors affects their biological properties. FEBS Letters, 2020, 594, 3542-3550.	2.8	2
12	Conditional Ablation of Myeloid TNF Improves Functional Outcome and Decreases Lesion Size after Spinal Cord Injury in Mice. Cells, 2020, 9, 2407.	4.1	13
13	Experimental Subarachnoid Hemorrhage Drives Catecholamine-Dependent Cardiac and Peripheral Microvascular Dysfunction. Frontiers in Physiology, 2020, 11, 402.	2.8	4
14	Effects of myeloid cell-restricted TNF inhibitors in vitro and in vivo. Journal of Leukocyte Biology, 2020, 107, 933-939.	3.3	5
15	Distinct modes of TNF signaling through its two receptors in health and disease. Journal of Leukocyte Biology, 2020, 107, 893-905.	3.3	41
16	KLF4 in Macrophages Attenuates TNF \hat{l}_{\pm} -Mediated Kidney Injury and Fibrosis. Journal of the American Society of Nephrology: JASN, 2019, 30, 1925-1938.	6.1	92
17	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	14.3	384
18	Mouse models of severe asthma for evaluation of therapeutic cytokine targeting. Immunology Letters, 2019, 207, 73-83.	2.5	13

#	Article	IF	CITATIONS
19	Basophil-derived tumor necrosis factor can enhance survival in a sepsis model in mice. Nature Immunology, 2019, 20, 129-140.	14.5	56
20	Modulation of bioavailability of proinflammatory cytokines produced by myeloid cells. Seminars in Arthritis and Rheumatism, 2019, 49, S39-S42.	3.4	6
21	Engulfment of mast cell secretory granules on skin inflammation boosts dendritic cell migration and priming efficiency. Journal of Allergy and Clinical Immunology, 2019, 143, 1849-1864.e4.	2.9	35
22	Making anti-cytokine therapy more selective: Studies in mice. Cytokine, 2018, 101, 33-38.	3.2	12
23	Properties of Fluorescent Far-Red Anti-TNF Nanobodies. Antibodies, 2018, 7, 43.	2.5	2
24	Novel Biodegradable Polymeric Microparticles Facilitate Scarless Wound Healing by Promoting Re-epithelialization and Inhibiting Fibrosis. Frontiers in Immunology, 2018, 9, 2851.	4.8	30
25	Non-redundant Functions of IL-6 Produced by Macrophages and Dendritic Cells in Allergic Airway Inflammation. Frontiers in Immunology, 2018, 9, 2718.	4.8	64
26	Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13051-13056.	7.1	71
27	Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages. Frontiers in Cellular and Infection Microbiology, 2018, 8, 58.	3.9	25
28	TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine, 2017, 89, 127-135.	3.2	140
29	Can we design a better anti-cytokine therapy?. Journal of Leukocyte Biology, 2017, 102, 783-790.	3.3	21
30	Constitutive smooth muscle tumour necrosis factor regulates microvascular myogenic responsiveness and systemic blood pressure. Nature Communications, 2017, 8, 14805.	12.8	47
31	Macrophages induce AKT/ \hat{l}^2 -catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nature Communications, 2017, 8, 14091.	12.8	166
32	Perivascular Fibroblasts of the Developing Spleen Act as $LT\hat{l}\pm 1\hat{l}^2$ 2-Dependent Precursors of Both T and B Zone Organizer Cells. Cell Reports, 2017, 21, 2500-2514.	6.4	26
33	VHH-Based Bispecific Antibodies Targeting Cytokine Production. Frontiers in Immunology, 2017, 8, 1073.	4.8	35
34	Tristetraprolin expression by keratinocytes controls local and systemic inflammation. JCI Insight, $2017, 2, .$	5.0	42
35	TNF Neutralization Results in the Delay of Transplantable Tumor Growth and Reduced MDSC Accumulation. Frontiers in Immunology, 2016, 7, 147.	4.8	34
36	Conditional ablation of myeloid TNF increases lesion volume after experimental stroke in mice, possibly via altered ERK1/2 signaling. Scientific Reports, 2016, 6, 29291.	3.3	37

#	Article	IF	CITATIONS
37	Tumor Necrosis Factor/Sphingosine-1-Phosphate Signaling Augments Resistance Artery Myogenic Tone in Diabetes. Diabetes, 2016, 65, 1916-1928.	0.6	22
38	Cell-type–restricted anti-cytokine therapy: TNF inhibition from one pathogenic source. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3006-3011.	7.1	68
39	Competing Actions of Type 1 Angiotensin II Receptors Expressed on T Lymphocytes and Kidney Epithelium during Cisplatin-Induced AKI. Journal of the American Society of Nephrology: JASN, 2016, 27, 2257-2264.	6.1	51
40	Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa. Frontiers in Immunology, 2015, 6, 595.	4.8	51
41	Macrophage-derived tumor necrosis factor-α mediates diabetic renal injury. Kidney International, 2015, 88, 722-733.	5.2	143
42	Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nature Medicine, 2015, 21, 786-794.	30.7	540
43	Commensal microbiota influence systemic autoimmune responses. EMBO Journal, 2015, 34, 466-474.	7.8	93
44	Serum Immunoproteomics Combined With Pathological Reassessment of Surgical Specimens Identifies TCP-1ζ Autoantibody as a Potential Biomarker in Thyroid Neoplasia. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1206-E1215.	3.6	5
45	Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF. Infection and Immunity, 2015, 83, 3612-3623.	2.2	30
46	Inflammation-induced formation of fat-associated lymphoid clusters. Nature Immunology, 2015, 16, 819-828.	14.5	175
47	Therapeutically Targeting Tumor Necrosis Factor-α/Sphingosine-1-Phosphate Signaling Corrects Myogenic Reactivity in Subarachnoid Hemorrhage. Stroke, 2015, 46, 2260-2270.	2.0	57
48	Mast-Cell-Derived TNF Amplifies CD8+ Dendritic Cell Functionality and CD8+ T Cell Priming. Cell Reports, 2015, 13, 399-411.	6.4	71
49	Dynamic changes in chromatin conformation at the <scp>TNF</scp> transcription start site in <scp>T</scp> helper lymphocyte subsets. European Journal of Immunology, 2014, 44, 251-264.	2.9	7
50	Cellular sources of pathogenic and protective TNF and experimental strategies based on utilization of TNF humanized mice. Cytokine and Growth Factor Reviews, 2014, 25, 115-123.	7.2	34
51	Prominent role for T cell-derived Tumour Necrosis Factor for sustained control of Mycobacterium tuberculosis infection. Scientific Reports, 2013, 3, 1809.	3.3	108
52	Nonredundant Function of Soluble LTî \pm ₃ Produced by Innate Lymphoid Cells in Intestinal Homeostasis. Science, 2013, 342, 1243-1246.	12.6	227
53	Comment on "Experimental Arthritis Triggers Periodontal Disease in Mice: Involvement of TNF-α and the Oral Microbiota― Journal of Immunology, 2012, 188, 4-5.	0.8	9
54	Modalities of Experimental TNF Blockade In Vivo: Mouse Models. Advances in Experimental Medicine and Biology, 2011, 691, 421-431.	1.6	11

#	Article	IF	Citations
55	Pathogenic and Protective Functions of TNF in Neuroinflammation Are Defined by Its Expression in T Lymphocytes and Myeloid Cells. Journal of Immunology, 2011, 187, 5660-5670.	0.8	67
56	Lymphotoxinâ€Î² receptor activation by lymphotoxinâ€Î± ₁ β ₂ and LIGHT promotes tungrowth in an NFκBâ€dependent manner. International Journal of Cancer, 2011, 128, 1363-1370.	10 <u>5</u> .1	27
57	Roles of Soluble and Membrane TNF and Related Ligands in Mycobacterial Infections: Effects of Selective and Non-selective TNF Inhibitors During Infection. Advances in Experimental Medicine and Biology, 2011, 691, 187-201.	1.6	29
58	Crosstalk between the canonical NF-κB and Notch signaling pathways inhibits Pparγ expression and promotes pancreatic cancer progression in mice. Journal of Clinical Investigation, 2011, 121, 4685-4699.	8.2	213
59	Cellular source and molecular form of TNF specify its distinct functions in organization of secondary lymphoid organs. Blood, 2010, 116, 3456-3464.	1.4	88
60	Tumor necrosis factor, lymphotoxin and cancer. IUBMB Life, 2010, 62, 283-289.	3.4	31
61	Lymphotoxin Beta Receptor Signaling in Intestinal Epithelial Cells Orchestrates Innate Immune Responses against Mucosal Bacterial Infection. Immunity, 2010, 32, 403-413.	14.3	144
62	Limited Role for Lymphotoxin \hat{l}_{\pm} in the Host Immune Response to Mycobacterium tuberculosis. Journal of Immunology, 2010, 185, 4292-4301.	0.8	26
63	TNF in Host Resistance to Tuberculosis Infection. Current Directions in Autoimmunity, 2010, 11, 157-179.	8.0	53
64	A Lymphotoxin-Driven Pathway to Hepatocellular Carcinoma. Cancer Cell, 2009, 16, 295-308.	16.8	345
65	Accelerated thymic atrophy as a result of elevated homeostatic expression of the genes encoded by the TNF/lymphotoxin cytokine locus. European Journal of Immunology, 2009, 39, 2906-2915.	2.9	33
66	T Cell-Derived Lymphotoxin Regulates Liver Regeneration. Gastroenterology, 2009, 136, 694-704.e4.	1.3	66
67	Physiological functions of tumor necrosis factor and the consequences of its pathologic overexpression or blockade: Mouse models. Cytokine and Growth Factor Reviews, 2008, 19, 231-244.	7.2	71
68	T cell-derived TNF down-regulates acute airway response to endotoxin. European Journal of Immunology, 2007, 37, 768-779.	2.9	13
69	Intracellular Signals and Events Activated by Cytokines of the Tumor Necrosis Factor Superfamily: From Simple Paradigms to Complex Mechanisms. International Review of Cytology, 2006, 252, 129-161.	6.2	83
70	Peyer patches are not required for acute graft-versus-host disease after myeloablative conditioning and murine allogeneic bone marrow transplantation. Blood, 2006, 107, 410-412.	1.4	46
71	Novel Lymphotoxin Alpha (LTα) Knockout Mice with Unperturbed Tumor Necrosis Factor Expression: Reassessing LTα Biological Functions. Molecular and Cellular Biology, 2006, 26, 4214-4225.	2.3	36
72	Novel tumor necrosis factor-knockout mice that lack Peyer's patches. European Journal of Immunology, 2005, 35, 1592-1600.	2.9	75

#	Article	IF	CITATIONS
73	TRAF2 Plays a Key, Nonredundant Role in LIGHT-Lymphotoxin \hat{l}^2 Receptor Signaling. Molecular and Cellular Biology, 2005, 25, 2130-2137.	2.3	46
74	Distinct and Nonredundant In Vivo Functions of TNF Produced by T Cells and Macrophages/Neutrophils. Immunity, 2005, 22, 93-104.	14.3	294
75	Tumor Necrosis Factor-induced Nonapoptotic Cell Death Requires Receptor-interacting Protein-mediated Cellular Reactive Oxygen Species Accumulation. Journal of Biological Chemistry, 2004, 279, 10822-10828.	3.4	368
76	Lymphotoxin and TNF Produced by B Cells Are Dispensable for Maintenance of the Follicle-Associated Epithelium but Are Required for Development of Lymphoid Follicles in the Peyer's Patches. Journal of Immunology, 2004, 173, 86-91.	0.8	59
77	Dissecting the role of lymphotoxin in lymphoid organs by conditional targeting. Immunological Reviews, 2003, 195, 106-116.	6.0	95
78	The role of lymphotoxin in development and maintenance of secondary lymphoid tissues. Cytokine and Growth Factor Reviews, 2003, 14, 275-288.	7.2	54
79	Distinct contributions of TNF and LT cytokines to the development of dendritic cells in vitro and their recruitment in vivo. Blood, 2003, 101, 1477-1483.	1.4	71
80	Redundancy in Tumor Necrosis Factor (TNF) and Lymphotoxin (LT) Signaling In Vivo: Mice with Inactivation of the Entire TNF/LT Locus versus Single-Knockout Mice. Molecular and Cellular Biology, 2002, 22, 8626-8634.	2.3	55
81	Distinct Role of Surface Lymphotoxin Expressed by B Cells in the Organization of Secondary Lymphoid Tissues. Immunity, 2002, 17, 239-250.	14.3	189
82	Human cortactin as putative cancer antigen. Oncogene, 2000, 19, 5204-5207.	5.9	9
83	Mature Follicular Dendritic Cell Networks Depend on Expression of Lymphotoxin \hat{l}^2 Receptor by Radioresistant Stromal Cells and of Lymphotoxin \hat{l}^2 and Tumor Necrosis Factor by B Cells. Journal of Experimental Medicine, 1999, 189, 159-168.	8.5	294
84	Susceptibility Locus for IgA Deficiency and Common Variable Immunodeficiency in the HLA-DR3, -B8, -A1 Haplotypes. Molecular Medicine, 1998, 4, 72-86.	4.4	118
85	Genetic polymorphism of the human tumor necrosis factor region in insulin-dependent diabetes mellitus linkage disequilibrium of TNFab microsatellite alleles with HLA haplotypes. Human Immunology, 1995, 44, 70-79.	2.4	52
86	Highly Informative Typing of the Human TNF Locus Using Six Adjacent Polymorphic Markers. Genomics, 1993, 16, 180-186.	2.9	272
87	Microsatellite, restriction fragment-length polymorphism, and sequence-specific oligonucleotide typing of the tumor necrosis factor region comparisons of the 4AOHW cell panel. Human Immunology, 1993, 38, 17-23.	2.4	26
88	Molecular control of tissue-specific expression at the mouse TNF locus. European Journal of Immunology, 1989, 19, 549-552.	2.9	32
89	Tumour necrosis factor and lymphotoxin genes map close to H–2D in the mouse major histocompatibility complex. Nature, 1987, 325, 265-267.	27.8	230