Emmanuel Boucrot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1106822/publications.pdf

Version: 2024-02-01

40 papers

8,575 citations

168829 31 h-index 41 g-index

43 all docs 43
docs citations

times ranked

43

13687 citing authors

#	Article	IF	CITATIONS
1	Mechanisms of Endocytosis II Non-Clathrin. , 2022, , .		О
2	Cdk5 and GSK3β inhibit fast endophilin-mediated endocytosis. Nature Communications, 2021, 12, 2424.	5.8	24
3	Unconventional endocytic mechanisms. Current Opinion in Cell Biology, 2021, 71, 120-129.	2.6	57
4	Measuring During Proliferative Cell. Methods in Molecular Biology, 2021, 2233, 19-42.	0.4	2
5	Molecular mechanism of Fast Endophilin-Mediated Endocytosis. Biochemical Journal, 2020, 477, 2327-2345.	1.7	68
6	Impact of insulin signaling and proteasomal activity on physiological output of a neuronal circuit in aging Drosophila melanogaster. Neurobiology of Aging, 2018, 66, 149-157.	1.5	15
7	Local actin polymerization during endocytic carrier formation. Biochemical Society Transactions, 2018, 46, 565-576.	1.6	55
8	Mechanisms of Carrier Formation during Clathrin-Independent Endocytosis. Trends in Cell Biology, 2018, 28, 188-200.	3.6	151
9	Endocytosis in proliferating, quiescent and terminally differentiated cells. Journal of Cell Science, 2018, 131, .	1.2	53
10	Probing Endocytosis During the Cell Cycle with Minimal Experimental Perturbation. Methods in Molecular Biology, 2018, 1847, 23-35.	0.4	6
11	FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nature Cell Biology, 2018, 20, 1023-1031.	4.6	79
12	Chlamydia exploits filopodial capture and a macropinocytosis-like pathway for host cell entry. PLoS Pathogens, 2018, 14, e1007051.	2.1	27
13	Fast and ultrafast endocytosis. Current Opinion in Cell Biology, 2017, 47, 64-71.	2.6	137
14	Myostatin-like proteins regulate synaptic function and neuronal morphology. Development (Cambridge), 2017, 144, 2445-2455.	1.2	37
15	ReducedÂinsulin signaling maintains electrical transmission in a neural circuit in aging flies. PLoS Biology, 2017, 15, e2001655.	2.6	23
16	Clustered Intracellular Salmonella enterica Serovar Typhimurium Blocks Host Cell Cytokinesis. Infection and Immunity, 2016, 84, 2149-2158.	1.0	12
17	Membrane curvature at a glance. Journal of Cell Science, 2015, 128, 1065-1070.	1.2	606
18	Endophilin marks and controls a clathrin-independent endocytic pathway. Nature, 2015, 517, 460-465.	13.7	428

#	Article	IF	CITATIONS
19	Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature, 2015, 517, 493-496.	13.7	276
20	Clathrin-Mediated Endocytosis Persists during Unperturbed Mitosis. Cell Reports, 2013, 4, 659-668.	2.9	51
21	Cooperative Recruitment of Dynamin and BIN/Amphiphysin/Rvs (BAR) Domain-containing Proteins Leads to GTP-dependent Membrane Scission*. Journal of Biological Chemistry, 2013, 288, 6651-6661.	1.6	132
22	Preferential invasion of mitotic cells by <i>Salmonella</i> reveals that cell surface cholesterol is maximal during metaphase. Journal of Cell Science, 2013, 126, 2990-6.	1.2	35
23	Membrane Fission Is Promoted by Insertion of Amphipathic Helices and Is Restricted by Crescent BAR Domains. Cell, 2012, 149, 124-136.	13.5	318
24	Redistribution of caveolae during mitosis. Journal of Cell Science, 2011, 124, 1965-1972.	1.2	84
25	Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology, 2011, 12, 517-533.	16.1	1,856
26	Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nature Immunology, 2011, 12, 770-777.	7.0	251
27	FCHo Proteins Are Nucleators of Clathrin-Mediated Endocytosis. Science, 2010, 328, 1281-1284.	6.0	397
28	SKIP, the Host Target of the Salmonella Virulence Factor SifA, Promotes Kinesin-1-Dependent Vacuolar Membrane Exchanges. Traffic, 2010, 11, 899-911.	1.3	99
29	Roles of AP-2 in Clathrin-Mediated Endocytosis. PLoS ONE, 2010, 5, e10597.	1.1	123
30	Perforin activates clathrin- and dynamin-dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme-mediated apoptosis. Blood, 2010, 115, 1582-1593.	0.6	113
31	Mammalian Cells Change Volume during Mitosis. PLoS ONE, 2008, 3, e1477.	1.1	74
32	Targeting of AMSH to Endosomes Is Required for Epidermal Growth Factor Receptor Degradation. Journal of Biological Chemistry, 2007, 282, 9805-9812.	1.6	75
33	Endosomal recycling controls plasma membrane area during mitosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 7939-7944.	3.3	300
34	Invasive and Adherent Bacterial Pathogens Co-Opt Host Clathrin for Infection. Cell Host and Microbe, 2007, 2, 340-351.	5.1	198
35	Role of lipids and actin in the formation of clathrin-coated pits. Experimental Cell Research, 2006, 312, 4036-4048.	1.2	120
36	Dynasore, a Cell-Permeable Inhibitor of Dynamin. Developmental Cell, 2006, 10, 839-850.	3.1	1,729

3

#	Article	IF	CITATIONS
37	The Salmonella effector protein PipB2 is a linker for kinesin-1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13497-13502.	3.3	153
38	The Translocated Salmonella Effector Proteins SseF and SseG Interact and Are Required To Establish an Intracellular Replication Niche. Infection and Immunity, 2006, 74, 6965-6972.	1.0	98
39	The Intracellular Fate of Salmonella Depends on the Recruitment of Kinesin. Science, 2005, 308, 1174-1178.	6.0	214
40	Salmonella typhimurium SifA Effector Protein Requires Its Membrane-anchoring C-terminal Hexapeptide for Its Biological Function. Journal of Biological Chemistry, 2003, 278, 14196-14202.	1.6	91