Ruijie Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11067813/publications.pdf Version: 2024-02-01

RUULE YANG

#	Article	IF	CITATIONS
1	InVO4-based photocatalysts for energy and environmental applications. Chemical Engineering Journal, 2022, 428, 131145.	6.6	44
2	High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nature Protocols, 2022, 17, 358-377.	5.5	100
3	Simultaneous Electrochemical Exfoliation and Covalent Functionalization of MoS ₂ Membrane for Ion Sieving. Advanced Materials, 2022, 34, e2201416.	11.1	45
4	Fabrication and optimization of CdS photocatalyst using nature leaf as biological template for enhanced visible-light photocatalytic hydrogen evolution. Catalysis Today, 2022, 402, 241-247.	2.2	6
5	CdS-based artificial leaf for photocatalytic hydrogen evolution and simultaneous degradation of biological wastewater. Chemosphere, 2022, 301, 134713.	4.2	6
6	CdS decorated artificial leaf BiVO4/InVO4 for photocatalytic hydrogen production and simultaneous degradation of biological hydrogen production wastewater. Catalysis Today, 2021, 364, 190-195.	2.2	21
7	MnO ₂ â€Based Materials for Environmental Applications. Advanced Materials, 2021, 33, e2004862.	11.1	252
8	ZnIn ₂ S ₄ â€Based Photocatalysts for Energy and Environmental Applications. Small Methods, 2021, 5, e2100887.	4.6	153
9	Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation. Chemical Engineering Journal, 2021, 423, 130164.	6.6	70
10	Investigation into the Phase–Activity Relationship of MnO ₂ Nanomaterials toward Ozoneâ€Assisted Catalytic Oxidation of Toluene. Small, 2021, 17, e2103052.	5.2	51
11	Investigation into the Phase–Activity Relationship of MnO ₂ Nanomaterials toward Ozoneâ€Assisted Catalytic Oxidation of Toluene (Small 50/2021). Small, 2021, 17, .	5.2	1
12	Effect of graphene size on photocatalytic performance of ZnIn2S4/graphene for hydrogen evolution under visible light. Chemical Physics Letters, 2020, 738, 136863.	1.2	18
13	One step preparation of in-situ carbon-modified artificial leaf BiVO4 for photocatalytic pollutants degradation. Materials Research Bulletin, 2020, 124, 110756.	2.7	12
14	The performance and reaction pathway of \hat{l}^2 MnO2/USY for catalytic oxidation of toluene in the presence of ozone at room temperature. Chemosphere, 2020, 247, 125864.	4.2	28
15	Leaf-inspired structural design of artificial leaf BiVO4/InVO4 heterojunction with enhanced photocatalytic activity for pollutant degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124448.	2.3	14
16	Construction of ZnIn ₂ S ₄ â€RGOâ€BiVO ₄ Zâ€Scheme System: Influence of the RGO loading and Co–Catalysts Types. ChemistrySelect, 2019, 4, 8815-8821.	0.7	12
17	Preparation of Z-Scheme system of CdS-RGO-BiVO4 and its activity for hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 25119-25128.	3.8	19
18	The Effect of the Morphology of BiVO ₄ on Zâ€scheme Photocatalyst of ZnIn ₂ S ₄ /RGO/BiVO ₄ for Hydrogen Generation Under Visible Light. ChemistrySelect, 2019, 4, 9595-9599.	0.7	11

Ruijie Yang

#	Article	IF	CITATIONS
19	The photocatalytic activity of GO-modified BiVO4 for the degradation of phenol under visible light irradiation. Chemical Physics Letters, 2019, 735, 136770.	1.2	11
20	Photocatalytic Hydrogen Production by RGO/ZnIn ₂ S ₄ under Visible Light with Simultaneous Organic Amine Degradation. ACS Omega, 2019, 4, 11135-11140.	1.6	32
21	<i>In situ</i> synthesis of C-doped BiVO ₄ with natural leaf as a template under different calcination temperatures. RSC Advances, 2019, 9, 14004-14010.	1.7	19
22	Construction of an artificial inorganic leaf CdS–BiVO ₄ Z-scheme and its enhancement activities for pollutant degradation and hydrogen evolution. Catalysis Science and Technology, 2019, 9, 2426-2437.	2.1	23
23	Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light. Renewable Energy, 2019, 139, 22-27.	4.3	62
24	Effects of Hydrothermal Time on the Properties, Morphology and Photocatalytic Activity of Rose‣ike Microspheres ZnIn 2 S 4. ChemistrySelect, 2019, 4, 13663-13667.	0.7	3