## **Zhigang Wang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1106671/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tetraethylenepentamine-grafted polyacrylonitrile-poly(methyl methacrylate) hollow fibers for low<br>concentration CO2 capture at ambient temperature. Chemical Engineering Research and Design, 2022,<br>157, 390-396. | 5.6  | 11        |
| 2  | Low-cost and facile fabrication of defect-free water permeable membrane for CO2 hydrogenation to methanol. Chemical Engineering Journal, 2022, 435, 133554.                                                            | 12.7 | 14        |
| 3  | Highly efficient recovery of hydrogen from dilute H2-streams using<br>BaCe0.7Zr0.1Y0.2O3-Î/Ni-BaCe0.7Zr0.1Y0.2O3-δ dual-layer hollow fiber membrane. Separation and<br>Purification Technology, 2022, 287, 120602.     | 7.9  | 4         |
| 4  | Externally self-supported metallic nickel hollow fiber membranes for hydrogen separation. Journal of Membrane Science, 2022, 653, 120513.                                                                              | 8.2  | 10        |
| 5  | Double redox process to synthesize CuO–CeO2 catalysts with strong Cu–Ce interaction for efficient toluene oxidation. Journal of Hazardous Materials, 2021, 404, 124088.                                                | 12.4 | 91        |
| 6  | Recent progress in direct carbon solid oxide fuel cell: Advanced anode catalysts, diversified carbon<br>fuels, and heat management. International Journal of Hydrogen Energy, 2021, 46, 4283-4300.                     | 7.1  | 57        |
| 7  | A mini-review on recent developments in SAPO-34 zeolite membranes and membrane reactors. Reaction<br>Chemistry and Engineering, 2021, 6, 52-66.                                                                        | 3.7  | 39        |
| 8  | Zeolite membrane reactors: from preparation to application in heterogeneous catalytic reactions.<br>Reaction Chemistry and Engineering, 2021, 6, 401-417.                                                              | 3.7  | 23        |
| 9  | CFD simulation on hydrogen-membrane reactor integrating cyclohexane dehydrogenation and CO2 methanation reactions: A conceptual study. Energy Conversion and Management, 2021, 235, 113989.                            | 9.2  | 15        |
| 10 | High Temperature Water Permeable Membrane Reactors for CO2 Utilization. Chemical Engineering<br>Journal, 2021, 420, 129834.                                                                                            | 12.7 | 38        |
| 11 | Simultaneous hydrogen and oxygen permeation through BaCe0.70Fe0.10Sc0.20O3-δ perovskite hollow<br>fiber membranes. Journal of Membrane Science, 2021, 635, 119513.                                                     | 8.2  | 12        |
| 12 | A superb water permeable membrane for potential applications in CO2 to liquid fuel process. Journal of Membrane Science, 2021, 639, 119682.                                                                            | 8.2  | 8         |
| 13 | Coupling CO2 separation with catalytic reverse water-gas shift reaction via ceramic-carbonate dual-phase membrane reactor. Chemical Engineering Journal, 2020, 379, 122182.                                            | 12.7 | 69        |
| 14 | High CO2 permeability of ceramic-carbonate dual-phase hollow fiber membrane at medium-high temperature. Journal of Membrane Science, 2020, 597, 117770.                                                                | 8.2  | 46        |
| 15 | Catalytic mixed conducting ceramic membrane reactors for methane conversion. Reaction Chemistry and Engineering, 2020, 5, 1868-1891.                                                                                   | 3.7  | 37        |
| 16 | CFD Simulation of a Hydrogen-Permeable Membrane Reactor for CO <sub>2</sub> Reforming of<br>CH <sub>4</sub> : The Interplay of the Reaction and Hydrogen Permeation. Energy & Fuels, 2020, 34,<br>12366-12378.         | 5.1  | 29        |
| 17 | Nanoporous Zeolite-A Sheltered Pd-Hollow Fiber Catalytic Membrane Reactor for Propane<br>Dehydrogenation. ACS Applied Nano Materials, 2020, 3, 6675-6683.                                                              | 5.0  | 30        |
| 18 | A comprehensive review of anti-coking, anti-poisoning and anti-sintering catalysts for biomass tar reforming reaction. Chemical Engineering Science: X, 2020, 7, 100065.                                               | 1.5  | 19        |

ZHIGANG WANG

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High H 2 permeable SAPOâ€34 hollow fiber membrane for high temperature propane dehydrogenation application. AICHE Journal, 2020, 66, e16278.                                                                                                 | 3.6  | 34        |
| 20 | Highly Efficient NO Decomposition via Dual-Functional Catalytic Perovskite Hollow Fiber Membrane<br>Reactor Coupled with Partial Oxidation of Methane at Medium-Low Temperature. Environmental<br>Science & Technology, 2019, 53, 9937-9946. | 10.0 | 26        |
| 21 | Re-evaluation of La0.6Sr0.4Co0.2Fe0.8O3- $\hat{l}$ hollow fiber membranes for oxygen separation after long-term storage of five and ten years. Journal of Membrane Science, 2019, 587, 117180.                                               | 8.2  | 42        |
| 22 | A novel study of sulfur-resistance for CO2 separation through asymmetric ceramic-carbonate dual-phase membrane at high temperature. Journal of Membrane Science, 2019, 581, 72-81.                                                           | 8.2  | 32        |
| 23 | Sintering and Coke Resistant Core/Yolk Shell Catalyst for Hydrocarbon Reforming. ChemCatChem, 2019, 11, 202-224.                                                                                                                             | 3.7  | 84        |
| 24 | High-performance catalytic perovskite hollow fiber membrane reactor for oxidative propane<br>dehydrogenation. Journal of Membrane Science, 2019, 578, 36-42.                                                                                 | 8.2  | 41        |
| 25 | Catalytic Pd0.77Ag0.23 alloy membrane reactor for high temperature water-gas shift reaction:<br>Methane suppression. Chemical Engineering Journal, 2019, 362, 116-125.                                                                       | 12.7 | 61        |
| 26 | Ni-phyllosilicate structure derived Ni–SiO <sub>2</sub> –MgO catalysts for bi-reforming applications:<br>acidity, basicity and thermal stability. Catalysis Science and Technology, 2018, 8, 1730-1742.                                      | 4.1  | 101       |
| 27 | High oxygen permeable and CO2-tolerant SrCoxFe0.9-xNb0.1O3-δ (x = 0.1–0.8) perovskite membranes:<br>Behavior and mechanism. Separation and Purification Technology, 2018, 201, 30-40.                                                        | 7.9  | 41        |
| 28 | Sintering resistant Ni nanoparticles exclusively confined within SiO <sub>2</sub> nanotubes for CH <sub>4</sub> dry reforming. Catalysis Science and Technology, 2018, 8, 3363-3371.                                                         | 4.1  | 71        |
| 29 | High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming. Journal of CO2 Utilization, 2018, 27, 238-246.                                                                     | 6.8  | 122       |
| 30 | Low temperature partial oxidation of methane via BaBi 0.05 Co 0.8 Nb 0.15 O 3â~Îr -Ni phyllosilicate catalytic hollow fiber membrane reactor. Chemical Engineering Journal, 2017, 315, 315-323.                                              | 12.7 | 54        |
| 31 | Highly active and coke resistant Ni/SiO 2 catalysts for oxidative reforming of model biogas: Effect of<br>low ceria loading. Journal of CO2 Utilization, 2017, 19, 284-295.                                                                  | 6.8  | 54        |
| 32 | Oxidative steam reforming of biomass tar model compound via catalytic BaBi0.05Co0.8Nb0.15O3â^' hollow fiber membrane reactor. Journal of Membrane Science, 2016, 510, 417-425.                                                               | 8.2  | 49        |
| 33 | High Purity Oxygen Production via BBCN Perovskite Hollow Fiber Membrane Swept by Steam. Industrial<br>& Engineering Chemistry Research, 2015, 54, 6371-6377.                                                                                 | 3.7  | 27        |
| 34 | Ultra-high oxygen permeable BaBiCoNb hollow fiber membranes and their stability under pure CH4<br>atmosphere. Journal of Membrane Science, 2014, 465, 151-158.                                                                               | 8.2  | 44        |
| 35 | High performance oxygen permeable membranes with Nb-doped BaBi0.05Co0.95O3â^î´ perovskite oxides.<br>Journal of Membrane Science, 2013, 431, 180-186.                                                                                        | 8.2  | 51        |
| 36 | Oxygen permeation and stability study of La0.6Sr0.4Co0.8Ga0.2O3â^' (LSCG) hollow fiber membrane with exposure to CO2, CH4 and He. Journal of Membrane Science, 2013, 427, 240-249.                                                           | 8.2  | 56        |

ZHIGANG WANG

| #  | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Oxidative CO <sub>2</sub> Reforming of Methane in<br>La <sub>0.6</sub> Sr <sub>0.4</sub> Co <sub>0.8</sub> Ga <sub>0.2</sub> O <sub>3-δ</sub> (LSCG) Hollow<br>Fiber Membrane Reactor. Environmental Science & Technology, 2013, 47, 14510-14517.                     | 10.0 | 66        |
| 38 | Preparation and oxygen permeation properties of SrCo0.9Nb0.1O3â^'Î′ hollow fibre membranes.<br>Separation and Purification Technology, 2011, 78, 175-180.                                                                                                             | 7.9  | 24        |
| 39 | Pilot-scale production of oxygen from air using perovskite hollow fibre membranes. Journal of<br>Membrane Science, 2010, 352, 189-196.                                                                                                                                | 8.2  | 99        |
| 40 | Effects of Sintering on the Properties of<br>La <sub>0.6</sub> Sr <sub>0.4</sub> Co <sub>0.2</sub> Fe <sub>0.8</sub> O <sub>3â^î(</sub> Perovskite<br>Hollow Fiber Membranes. Industrial & Engineering Chemistry Research, 2010, 49, 2895-2901.                       | 3.7  | 45        |
| 41 | Improvement of the oxygen permeation through perovskite hollow fibre membranes by surface acid-modification. Journal of Membrane Science, 2009, 345, 65-73.                                                                                                           | 8.2  | 76        |
| 42 | SrCo0.9Sc0.1O3â^' perovskite hollow fibre membranes for air separation at intermediate temperatures.<br>Journal of the European Ceramic Society, 2009, 29, 2815-2822.                                                                                                 | 5.7  | 59        |
| 43 | Preparation and Oxygen Permeation Properties of Highly Asymmetric<br>La <sub>0.6</sub> Sr <sub>0.4</sub> Co <sub>0.2</sub> Fe <sub>0.8</sub> O <sub>3â^î±</sub> Perovskite<br>Hollow-Fiber Membranes. Industrial & Engineering Chemistry Research, 2009, 48, 510-516. | 3.7  | 99        |
| 44 | Enhancement of oxygen permeation through La0.6Sr0.4Co0.2Fe0.8O3â^î^ hollow fibre membranes by surface modifications. Journal of Membrane Science, 2008, 324, 128-135.                                                                                                 | 8.2  | 115       |
| 45 | A CFD study on the performance of CO2 methanation in water-permeable membrane reactor system.<br>Reaction Chemistry and Engineering, 0, , .                                                                                                                           | 3.7  | 4         |