
J David Jentsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11065405/publications.pdf Version: 2024-02-01

I DAVID LENTSCH

#	Article	IF	CITATIONS
1	Shaping vulnerability to addiction – the contribution of behavior, neural circuits and molecular mechanisms. Neuroscience and Biobehavioral Reviews, 2018, 85, 117-125.	6.1	59
2	Differences in the subjective and motivational properties of alcohol across alcohol use severity: application of a novel translational human laboratory paradigm. Neuropsychopharmacology, 2018, 43, 1891-1899.	5.4	36
3	Dopamine D2 Receptors in Dopaminergic Neurons Modulate Performance in a Reversal Learning Task in Mice. ENeuro, 2018, 5, ENEURO.0229-17.2018.	1.9	28
4	Steep effort discounting of a preferred reward over a freely-available option in prolonged methamphetamine withdrawal in male rats. Psychopharmacology, 2017, 234, 2697-2705.	3.1	13
5	Genetic variation and gene expression across multiple tissues and developmental stages in a nonhuman primate. Nature Genetics, 2017, 49, 1714-1721.	21.4	57
6	Sex chromosome complement influences operant responding for a palatable food in mice. Genes, Brain and Behavior, 2014, 13, 527-534.	2.2	26
7	Dysbindin-1 loss compromises NMDAR-dependent synaptic plasticity and contextual fear conditioning. Hippocampus, 2014, 24, 204-213.	1.9	28
8	Dissecting impulsivity and its relationships to drug addictions. Annals of the New York Academy of Sciences, 2014, 1327, 1-26.	3.8	227
9	Modeling behavioral reactivity to losses and rewards on the Balloon Analogue Risk Task (BART): Moderation by alcohol problem severity Experimental and Clinical Psychopharmacology, 2014, 22, 298-306.	1.8	14
10	Cocaine self-administration behavior in inbred mouse lines segregating different capacities for inhibitory control. Psychopharmacology, 2013, 229, 515-525.	3.1	52
11	Potential molecular mechanisms for decreased synaptic glutamate release in dysbindin-1 mutant mice. Schizophrenia Research, 2013, 146, 254-263.	2.0	25
12	Identifying the molecular basis of inhibitory control deficits in addictions: neuroimaging in non-human primates. Current Opinion in Neurobiology, 2013, 23, 625-631.	4.2	11
13	Frontal cortical synaptic communication is abnormal in Disc1 genetic mouse models of schizophrenia. Schizophrenia Research, 2013, 146, 264-272.	2.0	26
14	Dysregulation of D ₂ -Mediated Dopamine Transmission in Monkeys after Chronic Escalating Methamphetamine Exposure. Journal of Neuroscience, 2012, 32, 5843-5852.	3.6	87
15	A non-human primate system for large-scale genetic studies of complex traits. Human Molecular Genetics, 2012, 21, 3307-3316.	2.9	51
16	Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mammalian Genome, 2012, 23, 680-692.	2.2	134
17	Asenapine effects on cognitive and monoamine dysfunction elicited by subchronic phencyclidine administration. Neuropharmacology, 2012, 62, 1442-1452.	4.1	34
18	Cognitive control and the dopamine D2-like receptor: a dimensional understanding of addiction. Depression and Anxiety, 2012, 29, 295-306.	4.1	33

J DAVID JENTSCH

#	Article	IF	CITATIONS
19	The Relationship Between Measures of Impulsivity and Alcohol Misuse: An Integrative Structural Equation Modeling Approach. Alcoholism: Clinical and Experimental Research, 2012, 36, 923-931.	2.4	76
20	Reversal learning as a measure of impulsive and compulsive behavior in addictions. Psychopharmacology, 2012, 219, 607-620.	3.1	257
21	Genetic Dissection of Behavioral Flexibility: Reversal Learning in Mice. Biological Psychiatry, 2011, 69, 1109-1116.	1.3	97
22	Reduced Dysbindin Expression Mediates N-Methyl-D-Aspartate Receptor Hypofunction and Impaired Working Memory Performance. Biological Psychiatry, 2011, 69, 28-34.	1.3	106
23	Risk-taking and alcohol use disorders symptomatology in a sample of problem drinkers Experimental and Clinical Psychopharmacology, 2011, 19, 361-370.	1.8	26
24	Dorsal Striatal D ₂ -Like Receptor Availability Covaries with Sensitivity to Positive Reinforcement during Discrimination Learning. Journal of Neuroscience, 2011, 31, 7291-7299.	3.6	81
25	Monoaminergic Regulation of Cognitive Control in Laboratory Animals. , 2011, , 43-62.		1
26	Serum lipid levels influence cognitive performance in older vervet monkeys (Chlorocebus aethiops) Tj ETQq0 0 0	rgBT_/Ove	rlock 10 Tf 5
27	Insight Into the Relationship Between Impulsivity and Substance Abuse From Studies Using Animal Models. Alcoholism: Clinical and Experimental Research, 2010, 34, 1306-1318.	2.4	166
28	Neural Components Underlying Behavioral Flexibility in Human Reversal Learning. Cerebral Cortex, 2010, 20, 1843-1852.	2.9	154
29	Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13141-13146.	7.1	144
30	Effects of atomoxetine and methylphenidate on performance of a lateralized reaction time task in rats. Psychopharmacology, 2009, 202, 497-504.	3.1	39
31	Inhibition of the norepinephrine transporter improves behavioral flexibility in rats and monkeys. Psychopharmacology, 2009, 202, 505-519.	3.1	110
32	Poor response inhibition: At the nexus between substance abuse and attention deficit/hyperactivity disorder. Neuroscience and Biobehavioral Reviews, 2009, 33, 690-698.	6.1	157
33	Effect of acute and repeated treatment with desipramine or methylphenidate on serial reversal learning in rats. Neuropharmacology, 2009, 57, 665-672.	4.1	29
34	Clonidine and guanfacine attenuate phencyclidine-induced dopamine overflow in rat prefrontal cortex: Mediating influence of the alpha-2A adrenoceptor subtype. Brain Research, 2008, 1246, 41-46.	2.2	16
35	Impulsivity in animal models for drug abuse disorders. Drug Discovery Today: Disease Models, 2008, 5, 247-250.	1.2	14
36	Clozapine Normalizes Prefrontal Cortex Dopamine Transmission in Monkeys Subchronically Exposed to Phencyclidine. Neuropsychopharmacology, 2008, 33, 491-496.	5.4	22

J DAVID JENTSCH

#	Article	IF	CITATIONS
37	Specific developmental disruption of disrupted-in-schizophrenia-1 function results in schizophrenia-related phenotypes in mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 18280-18285.	7.1	198
38	Dimensions of Impulsivity Are Associated with Poor Spatial Working Memory Performance in Monkeys. Journal of Neuroscience, 2007, 27, 14358-14364.	3.6	46
39	Orbitofrontal Cortex and Cognitiveâ€Motivational Impairments in Psychostimulant Addiction. Annals of the New York Academy of Sciences, 2007, 1121, 610-638.	3.8	51
40	Haploinsufficiency of the arginine–vasopressin gene is associated with poor spatial working memory performance in rats. Hormones and Behavior, 2006, 49, 501-508.	2.1	26
41	The HMG-CoA Reductase Inhibitor Lovastatin Reverses the Learning and Attention Deficits in a Mouse Model of Neurofibromatosis Type 1. Current Biology, 2005, 15, 1961-1967.	3.9	361
42	Alpha-2 Adrenoceptor Activation Inhibits Phencyclidine-Induced Deficits of Spatial Working Memory in Rats. Neuropsychopharmacology, 2005, 30, 1500-1510.	5.4	51
43	Impaired visuospatial divided attention in the spontaneously hypertensive rat. Behavioural Brain Research, 2005, 157, 323-330.	2.2	41
44	Nicotine enhances responding with conditioned reinforcement. Psychopharmacology, 2004, 171, 173-178.	3.1	125
45	Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology, 2004, 173, 98-104.	3.1	92
46	A low dose of the alpha2 agonist clonidine ameliorates the visual attention and spatial working memory deficits produced by phencyclidine administration to rats. Psychopharmacology, 2004, 175, 76-83.	3.1	32
47	Cannabinoid CB1 receptor-mediated impairment of visuospatial attention in the rat. Psychopharmacology, 2004, 177, 141-150.	3.1	45
48	Persistent and anatomically selective reduction in prefrontal cortical dopamine metabolism after repeated, intermittent cannabinoid administration to rats. Synapse, 2003, 49, 61-66.	1.2	77
49	Repeated Nicotine Exposure Enhances Reward-Related Learning in the Rat. Neuropsychopharmacology, 2003, 28, 1264-1271.	5.4	88
50	Null Mutation of the Arginine-Vasopressin Gene in Rats Slows Attentional Engagement and Facilitates Response Accuracy in a Lateralized Reaction Time Task. Neuropsychopharmacology, 2003, 28, 1597-1605.	5.4	21
51	Genetic Vasopressin Deficiency Facilitates Performance of a Lateralized Reaction-Time Task: Altered Attention and Motor Processes. Journal of Neuroscience, 2003, 23, 1066-1071.	3.6	18
52	PCP (Phencyclidine Hydrochloride). , 2003, , 833-834.		0
53	Sex-related differences in spatial divided attention and motor impulsivity in rats Behavioral Neuroscience, 2003, 117, 76-83.	1.2	37
54	Stimulation of protein kinase a activity in the rat amygdala enhances reward-related learning. Biological Psychiatry, 2002, 52, 111-118.	1.3	42

J DAVID JENTSCH

#	Article	lF	CITATIONS
55	Adaptation of monoaminergic responses to phencyclidine in nucleus accumbens and prefrontal cortex following repeated treatment with fluoxetine or imipramine. Brain Research, 2002, 958, 20-27.	2.2	18
56	Impairments of Reversal Learning and Response Perseveration after Repeated, Intermittent Cocaine Administrations to Monkeys. Neuropsychopharmacology, 2002, 26, 183-190.	5.4	248
57	Phencyclidine Model of Frontal Cortical Dysfunction in Nonhuman Primates. Neuroscientist, 2000, 6, 263-270.	3.5	5
58	Effects of Antipsychotic Drugs on Dopamine Release and Metabolism in the Central Nervous System. Handbooks of Pharmacology and Toxicology, 2000, , 31-41.	0.1	2
59	The Neuropsychopharmacology of Phencyclidine From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia. Neuropsychopharmacology, 1999, 20, 201-225.	5.4	1,160
60	Subchronic Phencyclidine Administration Increases Mesolimbic Dopaminergic System Responsivity and Augments Stress- and Psychostimulant-Induced Hyperlocomotion. Neuropsychopharmacology, 1998, 19, 105-113.	5.4	140
61	?-noradrenergic receptor modulation of the phencyclidine- and ?9-tetrahydrocannabinol-induced increases in dopamine utilization in rat prefrontal cortex. , 1998, 28, 21-26.		39
62	Prefrontal cortical involvement in phencyclidine-induced activation of the mesolimbic dopamine system: behavioral and neurochemical evidence. Psychopharmacology, 1998, 138, 89-95.	3.1	88
63	Phencyclidine Increases Forebrain Monoamine Metabolism in Rats and Monkeys: Modulation by the Isomers of HA966. Journal of Neuroscience, 1997, 17, 1769-1775.	3.6	74
64	Δ9-Tetrahydrocannabinol Increases Prefrontal Cortical Catecholaminergic Utilization and Impairs Spatial Working Memory in the Rat: Blockade of Dopaminergic Effects with HA966. Neuropsychopharmacology, 1997, 16, 426-432.	5.4	149
65	Subchronic Phencyclidine Administration Reduces Mesoprefrontal Dopamine Utilization and Impairs Prefrontal Cortical-Dependent Cognition in the Rat. Neuropsychopharmacology, 1997, 17, 92-99.	5.4	289
66	Dopamine and Spatial Working Memory in Rats and Monkeys: Pharmacological Reversal of Stress-Induced Impairment. Journal of Neuroscience, 1996, 16, 7768-7775.	3.6	211