
Sehijpal Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11065103/publications.pdf Version: 2024-02-01

SEHUDAL SINCH

#	Article	IF	CITATIONS
1	Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Materials Today: Proceedings, 2022, 50, 709-715.	1.8	71
2	Mechanism of Material Removal in Magneto Abrasive Flow Machining. Lecture Notes in Mechanical Engineering, 2022, , 225-238.	0.4	0
3	Bibliometric analysis of entropy weights method for multi-objective optimization in machining operations. Materials Today: Proceedings, 2022, 50, 1248-1255.	1.8	18
4	Smart watches: A review of evolution in bio-medical sector. Materials Today: Proceedings, 2022, 50, 1053-1066.	1.8	23
5	A box behnken design approach for parametric optimization in processing of aluminum 6061 tubes. Materials and Manufacturing Processes, 2022, 37, 1110-1121.	4.7	3
6	Hand and Abrasive Flow Polished Tungsten Carbide Die: Optimization of Surface Roughness, Polishing Time and Comparative Analysis in Wire Drawing. Materials, 2022, 15, 1287.	2.9	12
7	A review on magnetically assisted abrasive flow machining and abrasive material type. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, 236, 2765-2781.	2.5	3
8	Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review. Journal of Materials Research and Technology, 2021, 10, 1471-1492.	5.8	201
9	An Investigation of Energy Efficiency in Finish Turning of EN 353 Alloy Steel. Procedia CIRP, 2021, 98, 654-659.	1.9	20
10	Multiple-Criteria Decision-Making and Sensitivity Analysis for Selection of Materials for Knee Implant Femoral Component. Materials, 2021, 14, 2084.	2.9	75
11	Bibliometric Analysis of Specific Energy Consumption (SEC) in Machining Operations: A Sustainable Response. Sustainability, 2021, 13, 5617.	3.2	43
12	Flax fiber reinforced polylactic acid composites for non-structural engineering applications: Effect of molding temperature and fiber volume fraction on its mechanical properties. Polymers and Polymer Composites, 2021, 29, S780-S789.	1.9	13
13	Experimental investigations and optimization of machining performance during turning of EN-31 steel using TOPSIS approach. Materials Today: Proceedings, 2021, 48, 1089-1089.	1.8	3
14	Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study. Energies, 2021, 14, 4761.	3.1	39
15	Ergonomic evaluation of workstation design using taguchi experimental approach: a case of an automotive industry. International Journal on Interactive Design and Manufacturing, 2021, 15, 481-498.	2.2	6
16	Optimization and modelling of active power consumption of ST52.3 alloy steel during a drilling operation. Materials Today: Proceedings, 2021, , .	1.8	1
17	Influence of fiber volume fraction and curing temperature on mechanical properties of jute/PLA green composites. Polymers and Polymer Composites, 2020, 28, 273-284.	1.9	33
18	Effect of alkali treatment on mechanical properties of jute fiber-reinforced partially biodegradable green composites using epoxy resin matrix. Polymers and Polymer Composites, 2020, 28, 388-397.	1.9	39

SEHIJPAL SINGH

#	Article	IF	CITATIONS
19	Manufacturing and performance analysis of mechanically alloyed magnetic abrasives for magneto abrasive flow finishing. Journal of Manufacturing Processes, 2020, 50, 161-169.	5.9	34
20	Analyzing Process Parameters for Finishing of Small Holes Using Magnetically Assisted Abrasive Flow Machining Process. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	2.6	8
21	Preparation, microstructure analysis and performance evaluation of bonded magnetic abrasives. International Journal of Abrasive Technology, 2020, 10, 32.	0.2	4
22	An outlook on the sustainable machining aspects of minimum quantity lubrication during processing of difficult to cut materials. Materials Today: Proceedings, 2020, 33, 1592-1598.	1.8	7
23	Experimental investigation and design optimisation for magnetic abrasive flow machining using response surface methodology. International Journal of Materials and Product Technology, 2020, 61, 244.	0.2	6
24	Finishing of Tubes using Bonded Magnetic Abrasive Powder in an Abrasive Medium. Powder Metallurgy Progress, 2020, 20, 1-11.	0.1	0
25	Influence of Surface Treatment and Molding Temperature on Mechanical Properties of Jute/PLA-Based Green Composites. Lecture Notes in Mechanical Engineering, 2020, , 149-158.	0.4	2
26	Optimization and prediction of sintering process parameters for magnetic abrasives preparation using response surface methodology. International Journal of Data and Network Science, 2019, , 103-108.	4.6	3
27	Preparation, Microstructure Evaluation and Performance Analysis of Diamond-Iron Bonded Magnetic Abrasive Powder. Powder Metallurgy Progress, 2019, 19, 82-89.	0.1	7
28	Effect of Curing Temperature on Mechanical Properties of Natural Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 2018, 15, 687-696.	3.1	62
29	A Brief Review of Jute Fibre and Its Composites. Materials Today: Proceedings, 2018, 5, 28427-28437.	1.8	85
30	Study of Effect of Surface Treatment on Mechanical Properties of Natural Fiber Reinforced Composites. Materials Today: Proceedings, 2017, 4, 2793-2799.	1.8	82
31	Multi objective optimization using different methods of assigning weights to energy consumption responses, surface roughness and material removal rate during rough turning operation. Journal of Cleaner Production, 2017, 164, 45-57.	9.3	137
32	Optimization of energy consumption response parameters for turning operation using Taguchi method. Journal of Cleaner Production, 2016, 137, 1406-1417.	9.3	142
33	Prediction of forces during drilling of composite laminates using artificial neural network: A new approach. FME Transactions, 2016, 44, 36-42.	1.4	16
34	Effect of Natural Fillers on Mechanical Properties of GFRP Composites. Journal of Composites, 2013, 2013, 1-8.	0.8	43
35	Experimental Studies on Mechanism of Material Removal in Abrasive Flow Machining Process. Materials and Manufacturing Processes, 2008, 23, 714-718.	4.7	43
36	Technology and research developments in powder mixed electric discharge machining (PMEDM). Journal of Materials Processing Technology, 2007, 184, 32-41.	6.3	210

SEHIJPAL SINGH

#	Article	IF	CITATIONS
37	Quality optimisation of surface finishing by magnetic field assisted abrasive flow machining through Taguchi technique. International Journal of Computer Applications in Technology, 2006, 27, 31.	0.5	6
38	Wear behavior of materials in magnetically assisted abrasive flow machining. Journal of Materials Processing Technology, 2002, 128, 155-161.	6.3	66
39	Development of magneto abrasive flow machining process. International Journal of Machine Tools and Manufacture, 2002, 42, 953-959.	13.4	134