Shuyang Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11064844/publications.pdf Version: 2024-02-01

SHUVANC YE

#	Article	IF	CITATIONS
1	Integrated power fiber for energy conversion and storage. Energy and Environmental Science, 2013, 6, 805.	30.8	359
2	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie - International Edition, 2018, 57, 12360-12364.	13.8	160
3	Chemically Addressable Perovskite Nanocrystals for Lightâ€Emitting Applications. Advanced Materials, 2017, 29, 1701153.	21.0	139
4	Flexible fiber-type zinc–carbon battery based on carbon fiber electrodes. Nano Energy, 2013, 2, 1242-1248.	16.0	107
5	Effect of Heteroatom and Doping on the Thermoelectric Properties of Poly(3â€alkylchalcogenophenes). Advanced Energy Materials, 2018, 8, 1802419.	19.5	99
6	What Limits the Molecular Weight and Controlled Synthesis of Poly(3-alkyltellurophene)s?. Macromolecules, 2016, 49, 1704-1711.	4.8	48
7	Group 16 conjugated polymers based on furan, thiophene, selenophene, and tellurophene. Chemical Society Reviews, 2022, 51, 6442-6474.	38.1	34
8	Synthesis and photophysical properties of platinum-acetylide copolymers with thiophene, selenophene and tellurophene. Chemical Communications, 2015, 51, 5475-5478.	4.1	33
9	Examining Structure–Property–Function Relationships in Thiophene, Selenophene, and Tellurophene Homopolymers. ACS Applied Energy Materials, 2018, 1, 5033-5042.	5.1	24
10	The role of halogens in the catalyst transfer polycondensation for π-conjugated polymers. Chemical Science, 2019, 10, 2075-2080.	7.4	23
11	Isolation of Living Conjugated Polymer Chains. Journal of the American Chemical Society, 2020, 142, 11244-11251.	13.7	22
12	Homogenous Synthesis of Monodisperse High Oligomers of 3-Hexylthiophene by Temperature Cycling. Journal of the American Chemical Society, 2019, 141, 17053-17056.	13.7	21
13	Selfâ€Organization and Charge Transport Properties of Selenium and Tellurium Analogues of Polythiophene. Macromolecular Rapid Communications, 2019, 40, e1800596.	3.9	18
14	Microstructure and heteroatom dictate the doping mechanism and thermoelectric properties of poly(alkyl-chalcogenophenes). Applied Physics Letters, 2021, 118, 233301.	3.3	18
15	Elucidating the Role of Catalyst Steric and Electronic Effects in Controlling the Synthesis of Ï€-Conjugated Polymers. Macromolecules, 2020, 53, 138-148.	4.8	15
16	Spherulite‣ike Micelles. Angewandte Chemie - International Edition, 2021, 60, 10950-10956.	13.8	15
17	Unusual Performance Increase in Polymer Solar Cells by Cooling a Hot Donor/Acceptor Ink in a Good Solvent. ACS Applied Materials & Interfaces, 2018, 10, 979-984.	8.0	14
18	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie, 2018, 130, 12540-12544.	2.0	14

SHUYANG YE

#	Article	IF	CITATIONS
19	Heavy atom substitution — A strategy for improving conductivity in conjugated polymers. Synthetic Metals, 2019, 253, 57-61.	3.9	13
20	Redox chemistry of $\ddot{i} \in$ -extended tellurophenes. Communications Chemistry, 2019, 2, .	4.5	12
21	Crystallization-Driven Self-Assembly of Amphiphilic Triblock Terpolymers With Two Corona-Forming Blocks of Distinct Hydrophilicities. Macromolecules, 2020, 53, 6576-6588.	4.8	11
22	Improving the Kumada Catalyst Transfer Polymerization with Water-Scavenging Grignard Reagents. ACS Macro Letters, 2021, 10, 697-701.	4.8	8
23	Robust Electrodes for Flexible Energy Storage Devices Based on Bimetallic Encapsulated Core–Multishell Structures. Advanced Science, 2021, 8, e2100911.	11.2	8
24	A Poreâ€Forming Strategy Toward Porous Carbonâ€Based Substrates for High Performance Flexible Lithium Metal Full Batteries. Energy and Environmental Materials, 2023, 6, .	12.8	8
25	Spheruliteâ€Like Micelles. Angewandte Chemie, 2021, 133, 11045-11051.	2.0	4
26	Innenrücktitelbild: Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering (Angew. Chem. 38/2018). Angewandte Chemie, 2018, 130, 12765-12765.	2.0	0