Siqing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1106403/publications.pdf

Version: 2024-02-01

26 papers

1,653 citations

394421 19 h-index 25 g-index

26 all docs 26 docs citations

26 times ranked 2686 citing authors

#	Article	IF	CITATIONS
1	Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug–induced apoptosis. Blood, 2009, 114, 3625-3628.	1.4	258
2	An analysis of the clinical and biologic significance of TP53 loss and the identification of potential novel transcriptional targets of TP53 in multiple myeloma. Blood, 2008, 112, 4235-4246.	1.4	124
3	Tumor-specific IL-9–producing CD8 ⁺ Tc9 cells are superior effector than type-I cytotoxic Tc1 cells for adoptive immunotherapy of cancers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2265-2270.	7.1	116
4	Dectin-1-activated dendritic cells trigger potent antitumour immunity through the induction of Th9 cells. Nature Communications, 2016, 7, 12368.	12.8	103
5	Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget, 2010, 1, 22-33.	1.8	101
6	Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood, 2006, 107, 2432-2439.	1.4	97
7	Targeting \hat{l}^2 2-microglobulin for induction of tumor apoptosis in human hematological malignancies. Cancer Cell, 2006, 10, 295-307.	16.8	92
8	Optimizing immunotherapy in multiple myeloma: restoring the function of patients' monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood, 2006, 108, 4071-4077.	1.4	87
9	Critical roles of Raf/MEK/ERK and PI3K/AKT signaling and inactivation of p38 MAP kinase in the differentiation and survival of monocyte-derived immature dendritic cells. Experimental Hematology, 2005, 33, 564-572.	0.4	83
10	Identification of early growth response protein 1 (EGR-1) as a novel target for JUN-induced apoptosis in multiple myeloma. Blood, 2010, 115, 61-70.	1.4	79
11	Can Women Correctly Contract Their Pelvic Floor Muscles Without Formal Instruction?. Female Pelvic Medicine and Reconstructive Surgery, 2013, 19, 8-12.	1.1	78
12	Targeting Heat Shock Proteins for Immunotherapy in Multiple Myeloma: Generation of Myeloma-Specific CTLs Using Dendritic Cells Pulsed with Tumor-Derived gp96. Clinical Cancer Research, 2005, 11, 8808-8815.	7.0	61
13	Novel and Detrimental Effects of Lipopolysaccharide on In Vitro Generation of Immature Dendritic Cells: Involvement of Mitogen-Activated Protein Kinase p38. Journal of Immunology, 2003, 171, 4792-4800.	0.8	60
14	p38 MAPK-inhibited dendritic cells induce superior antitumour immune responses and overcome regulatory T-cell-mediated immunosuppression. Nature Communications, 2014, 5, 4229.	12.8	49
15	Foxo1 and Foxp1 play opposing roles in regulating the differentiation and antitumor activity of T _H 9 cells programmed by IL-7. Science Signaling, 2017, 10, .	3 . 6	47
16	TNF- \hat{l}_{\pm} enhances Th9 cell differentiation and antitumor immunity via TNFR2-dependent pathways. , 2019, 7, 28.		47
17	Interleukin-33 Contributes to the Induction of Th9 Cells and Antitumor Efficacy by Dectin-1-Activated Dendritic Cells. Frontiers in Immunology, 2018, 9, 1787.	4.8	33
18	Myeloma cell line–derived, pooled heat shock proteins as a universal vaccine for immunotherapy of multiple myeloma. Blood, 2009, 114, 3880-3889.	1.4	31

SIQING WANG

#	Article	IF	CITATION
19	IL-33 drives the antitumor effects of dendritic cells via the induction of Tc9 cells. Cellular and Molecular Immunology, 2019, 16, 644-651.	10.5	24
20	RARÎ ± 2 expression is associated with disease progression and plays a crucial role in efficacy of ATRA treatment in myeloma. Blood, 2009, 114, 600-607.	1.4	20
21	Identification of the histone lysine demethylase KDM4A/JMJD2A as a novel epigenetic target in M1 macrophage polarization induced by oxidized LDL. Oncotarget, 2017, 8, 114442-114456.	1.8	20
22	Dendritic cell vaccine but not idiotype-KLH protein vaccine primes therapeutic tumor-specific immunity against multiple myeloma. Frontiers in Bioscience - Landmark, 2007, 12, 3566.	3.0	19
23	Dectin-1-activated dendritic cells: A potent Th9 cell inducer for tumor immunotherapy. Oncolmmunology, 2016, 5, e1238558.	4.6	15
24	Dectin-1 stimulates IL-33 expression in dendritic cells via upregulation of IRF4. Laboratory Investigation, 2018, 98, 708-714.	3.7	5
25	TNF-a Is a Potent Stimulator of Tc9-Cell Differentiation. Journal of Immunotherapy, 2020, 43, 265-272.	2.4	2
26	Tetrahydrobiopterin induces proteasome inhibitor resistance and tumor progression in multiple myeloma. Medical Oncology, 2022, 39, 55.	2.5	2