Zoltan Machaty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11061590/publications.pdf

Version: 2024-02-01

26 papers

1,111 citations

430442 18 h-index 26 g-index

27 all docs

27 docs citations

times ranked

27

834 citing authors

#	Article	IF	Citations
1	Development of Early Porcine Embryos In Vitro and In Vivo1. Biology of Reproduction, 1998, 59, 451-455.	1.2	239
2	Production of $\hat{l}\pm 1,3$ -Galactosyltransferase-Knockout Cloned Pigs Expressing Human $\hat{l}\pm 1,2$ -Fucosylosyltransferase 1. Biology of Reproduction, 2003, 69, 437-445.	1,2	151
3	Developmental Changes in the Intracellular Ca 2+ Release Mechanisms in Porcine Oocytes1. Biology of Reproduction, 1997, 56, 921-930.	1.2	88
4	Somatic cell nuclear transfer in pigs: recent achievements and future possibilities. Reproduction, Fertility and Development, 2007, 19, 403.	0.1	85
5	Parthenogenetic Activation of Pig Oocytes with Calcium lonophore and the Block to Sperm Penetration after Activation1. Biology of Reproduction, 1998, 58, 1357-1366.	1.2	58
6	Lipid characterization of individual porcine oocytes by dual mode DESI-MS and data fusion. Analytica Chimica Acta, 2014, 848, 51-60.	2.6	55
7	Strategies for activating nuclear transfer oocytes. Reproduction, Fertility and Development, 1998, 10, 599.	0.1	43
8	Effect of Resveratrol on the Development of Porcine Embryos Produced In Vitro. Journal of Reproduction and Development, 2010, 56, 330-335.	0.5	43
9	Inhibitors of mitochondrial ATP production at the time of compaction improve development of in vitro produced porcine embryos. Molecular Reproduction and Development, 2001, 58, 39-44.	1.0	41
10	Effects of activation methods and culture conditions on development of parthenogenetic porcine embryos. Animal Reproduction Science, 2008, 104, 264-274.	0.5	34
11	Activation of porcine oocytes with calcium ionophore: Effects of extracellular calcium. Molecular Reproduction and Development, 1999, 53, 99-107.	1.0	33
12	Optimisation of porcine oocyte activation following nuclear transfer. Zygote, 2000, 8, 69-77.	0.5	32
13	Capacitative Calcium Entry Mechanism in Porcine Oocytes1. Biology of Reproduction, 2002, 66, 667-674.	1.2	31
14	Pig oocyte activation using a Zn2+ chelator, TPEN. Theriogenology, 2015, 84, 1024-1032.	0.9	30
15	Time course of cortical and zona reactions of pig oocytes upon intracellular calcium increase induced by thimerosal. Zygote, 1999, 7, 79-86.	0.5	29
16	Parthenogenetic Activation of Porcine Oocytes After Nuclear Transfer. Cloning, 1999, 1, 101-109.	2.1	25
17	Calcium Release and Subsequent Development Induced by Modification of Sulfhydryl Groups in Porcine Oocytes1. Biology of Reproduction, 1999, 60, 1384-1391.	1.2	21
18	Activation of Porcine Oocytes Via an Exogenously Introduced Rat Muscarinic M1 Receptor 1. Biology of Reproduction, 1997, 57, 85-91.	1.2	20

#	Article	IF	CITATIONS
19	Na+/Ca2+ Exchanger in Porcine Oocytes1. Biology of Reproduction, 2002, 67, 1133-1139.	1.2	14
20	Activation of Oocytes After Nuclear Transfer. Methods in Molecular Biology, 2006, 348, 43-58.	0.4	10
21	Analysis of cat oocyte activation methods for the generation of feline disease models by nuclear transfer. Reproductive Biology and Endocrinology, 2009, 7, 148.	1.4	7
22	\hat{l}^3 -glutamyl transpeptidase of spermatozoa may decrease oocyte glutathione content at fertilization in pigs. Molecular Reproduction and Development, 1996, 45, 485-490.	1.0	6
23	Incidence of apoptosis in parthenogenetic porcine embryos generated by using protein kinase or protein synthesis inhibitors. Animal Reproduction Science, 2009, 112, 261-272.	0.5	6
24	High Hydrostatic Pressure Treatment of Porcine Oocytes Induces Parthenogenetic Activation. Cellular Reprogramming, 2010, 12, 475-480.	0.5	6
25	Biodynamic optical assay for embryo viability. Journal of Biomedical Optics, 2019, 24, 1.	1.4	2
26	An Alternative Way to Improve Mammalian Embryo Development <i>In Vitro</i> : Culture of Zona Pellucida-Free Embryos. Cellular Reprogramming, 2022, 24, 111-117.	0.5	2