S Wageh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11060140/publications.pdf Version: 2024-02-01

S WACEH

#	Article	IF	CITATIONS
1	CdS/polymer S-scheme H2-production photocatalyst and its in-situ irradiated electron transfer mechanism. Chinese Journal of Catalysis, 2022, 43, 586-588.	14.0	64
2	Design principle of S-scheme heterojunction photocatalyst. Journal of Materials Science and Technology, 2022, 124, 171-173.	10.7	257
3	S-scheme ZnO/WO3 heterojunction photocatalyst for efficient H2O2 production. Journal of Materials Science and Technology, 2022, 124, 193-201.	10.7	108
4	Drain-induced barrier lowering effect in organic thin-film transistors based on various organic small molecules: Channel length and drain voltage influences. Synthetic Metals, 2022, 287, 117066.	3.9	1
5	S-Scheme 2D/2D Bi2MoO6/BiOI van der Waals heterojunction for CO2 photoreduction. Chinese Journal of Catalysis, 2022, 43, 1657-1666.	14.0	75
6	A new heterojunction in photocatalysis: S-scheme heterojunction. Chinese Journal of Catalysis, 2021, 42, 667-669.	14.0	260
7	Silver Nanowires Digital Printing for Inverted Flexible Semiâ€Transparent Solar Cells. Advanced Engineering Materials, 2021, 23, 2001305.	3.5	16
8	Contact resistance corrected-electrical characteristics with channel length effects in π-conjugated small-molecule benzanthracene organic thin film transistors. Synthetic Metals, 2021, 273, 116670.	3.9	10
9	Digital printing of a novel electrode for stable flexible organic solar cells with a power conversion efficiency of 8.5%. Scientific Reports, 2021, 11, 14212.	3.3	10
10	Photocatalytic antibacterial and osteoinductivity. Chinese Journal of Catalysis, 2021, 42, 1051-1053.	14.0	10
11	Graphene-Zn0.5Cd0.5S nanocomposite with enhanced visible-light photocatalytic CO2 reduction activity. Applied Surface Science, 2020, 506, 144683.	6.1	48
12	Analysis and comparison of total resistance models for accurate static modeling of long- and short-channel OTFTs produced with various organic materials. Chinese Journal of Physics, 2020, 67, 180-192.	3.9	2
13	NiFe-LDH nanosheet/carbon fiber nanocomposite with enhanced anionic dye adsorption performance. Applied Surface Science, 2020, 511, 145570.	6.1	112
14	Hysteresis control by varying Ta2O5-nanoparticles concentration in PMMA-Ta2O5 bilayer gate dielectric of hybrid-organic thin film transistors. Organic Electronics, 2019, 75, 105390.	2.6	7
15	Ultra-Violet Electroluminescence of ZnO Nanorods/MEH-PPV Heterojunctions by Optimizing Their Thickness and Using AZO as a Transparent Conductive Electrode. Materials, 2019, 12, 2976.	2.9	5
16	Hierarchical C/NiO-ZnO nanocomposite fibers with enhanced adsorption capacity for Congo red. Journal of Colloid and Interface Science, 2019, 537, 736-745.	9.4	123
17	Facile Synthesis of Ternary Alloy of CdSe1-xSx Quantum Dots with Tunable Absorption and Emission of Visible Light. Nanomaterials, 2018, 8, 979.	4.1	10
18	Organic insulator layer influence on the electrical properties of N, N'-di (2-ethylhexyl) - 3, 4, 9, 10-perylene diimide organic thin-film transistors: Experiment and modeling. Chinese Journal of Physics, 2018, 56, 1964-1976.	3.9	7

S WAGEH

#	Article	IF	CITATIONS
19	Enhanced Visible Light Photo-Catalytic Activity of ZnO and Ag-Doped ZnO (ZnO:Ag) Nanoparticles. Journal of Nanoscience and Nanotechnology, 2018, 18, 7682-7690.	0.9	8
20	Photodiode based on Pb0.9Cd0.1S ternary alloy semiconductor for solar tracking systems. Journal of Materials Science: Materials in Electronics, 2018, 29, 16880-16893.	2.2	9
21	Structural and optical properties of CdZnTe quantum dots capped with a bifunctional Molecule. Journal of Materials Science: Materials in Electronics, 2017, 28, 9114-9125.	2.2	9
22	A photodiode based on PbS nanocrystallites for FYTRONIX solar panel automatic tracking controller. Physica B: Condensed Matter, 2017, 527, 44-51.	2.7	19
23	Structural and Optical Properties of Li ₂ O–NaF–ZnO–P ₂ O ₅ :(CdO) T	j ETQq1 1	. 0 _, 784314
24	Structural, morphological and optical properties of PEDOT:PSS/QDs nano-composite films prepared by spin-casting. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 83, 64-68.	2.7	10
25	Effect of adding reducing agent on the structure and optical properties of one-pot preparation method of CdTe quantum dots. Journal of Materials Science: Materials in Electronics, 2016, 27, 8384-8393.	2.2	2
26	Ternary ZnS:Te nanoparticles capped with 3-mercaptopropionic acid prepared in aqueous media. Journal of Materials Science: Materials in Electronics, 2016, 27, 10877-10887.	2.2	5
27	Graphene in Photocatalysis: A Review. Small, 2016, 12, 6640-6696.	10.0	836
28	New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Applied Catalysis B: Environmental, 2016, 192, 101-107.	20.2	212
29	Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chinese Journal of Catalysis, 2015, 36, 2127-2134.	14.0	197
30	CdS/Graphene Nanocomposite Photocatalysts. Advanced Energy Materials, 2015, 5, 1500010.	19.5	694
31	Enhanced visible light photocatalytic H2-production of g-C3N4/WS2 composite heterostructures. Applied Surface Science, 2015, 358, 196-203.	6.1	327
32	3D BiOl–GO composite with enhanced photocatalytic performance for phenol degradation under visible-light. Ceramics International, 2015, 41, 3511-3517.	4.8	74
33	Electrical and photoresponse properties of Au/ reduced graphene:poly(3-hexylthiophene) nanocomposite /p-Si photodiodes. Optical and Quantum Electronics, 2015, 47, 1779-1789.	3.3	11
34	Structure and optical properties of capped and uncapped CdS nanoparticles prepared in aqueous medium. Journal of Materials Science: Materials in Electronics, 2014, 25, 4830-4840.	2.2	11
35	Light Emitting Devices Based on CdSe Nanoparticles Capped With Mercaptoacetic Acid. IEEE Journal of Quantum Electronics, 2014, 50, 1-8.	1.9	21
36	Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell. Solid State Communications, 2014, 183, 56-59.	1.9	51

S WAGEH

#	Article	IF	CITATIONS
37	CdS Quantum Dots and Dye Co-Sensitized Nanorods TiO ₂ Solar Cell. Journal of Nanoelectronics and Optoelectronics, 2014, 9, 662-665.	0.5	7
38	Band edge emission of ZnS nanoparticles prepared by excess of thiourea as a source of sulfur. Journal of Sol-Gel Science and Technology, 2013, 66, 443-451.	2.4	17
39	Optical properties and thermal degradation of CdSe capped with 3-mercaptopropionic acid. Journal of Materials Science: Materials in Electronics, 2013, 24, 3049-3057.	2.2	7
40	Preparation and characterization of a novel system of CdS nanoparticles embedded in borophosphate glass matrix. Journal of Alloys and Compounds, 2013, 555, 161-168.	5.5	19
41	Design and optimization of light emitting devices based on CdTe-QD as an emissive layer. Journal of Luminescence, 2012, 132, 1957-1963.	3.1	11
42	Studying of Formation of Oxide Layer on the Surface of the Nanoparticles and Growth of CdTe Nanoparticles in Glass Matrix. Advanced Science Letters, 2012, 11, 110-119.	0.2	6
43	Electronic and excitonic processes in multilayer organic light emitting devices incorporating PbSe quantum dots. Journal of Computational Electronics, 2011, 10, 414-423.	2.5	4
44	An optical and structural investigation into CdTe nanocrystals embedded into the tellurium lithium borophosphate glass matrix. Science China: Physics, Mechanics and Astronomy, 2010, 53, 818-822.	5.1	6
45	Anode material based on SWCNT for infrared quantum dot light-emitting devices. Optical and Quantum Electronics, 2010, 42, 263-276.	3.3	5
46	ELECTROMAGNETIC MODELING OF OUTCOUPLING EFFICIENCY AND LIGHT EMISSION IN NEAR-INFRARED QUANTUM DOT LIGHT EMITTING DEVICES. Progress in Electromagnetics Research B, 2010, 24, 263-284.	1.0	3
47	SYNTHESIS AND CHARACTERIZATION OF CdTe NANOPARTICLES EMBEDDED IN NOVEL GLASS MATRIX. International Journal of Nanoscience, 2009, 08, 605-610.	0.7	4
48	Strong confinement of PbSe nanocrystals in phosphate glass. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1157-1163.	2.7	10
49	Cd1â^'xZnxS nanoparticles stabilized by a bifunctional organic molecule. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2810-2813.	2.7	19
50	CdSe nanocrystals in novel phosphate glass matrix. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 3049-3054.	2.7	17
51	Raman and photoluminescence study of CdSe nanoparticles capped with a bifunctional molecule. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 39, 8-14.	2.7	60
52	Study of blue electroluminescence from titania nanotubes doped into a polymeric matrix. Nanotechnology, 2006, 17, 100-104.	2.6	13
53	Optical properties of strongly luminescing mercaptoacetic-acid-capped ZnS nanoparticles. Journal of Luminescence, 2003, 102-103, 768-773.	3.1	54
54	Effect of aging on CdSe nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 269-273.	2.7	20

#	Article	IF	CITATIONS
55	Growth and optical properties of colloidal ZnS nanoparticles. Journal of Crystal Growth, 2003, 255, 332-337.	1.5	213
56	Negative differential resistance behavior in nâ€channel organic thin film transistors based on C 60 and PTCDIâ€C8: Electrical characterization and parameter extraction. Physica Status Solidi (A) Applications and Materials Science, 0, , 2100500.	1.8	1