John R Gollan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11059816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contrasting topoclimate, longâ€ŧerm macroclimatic averages, and habitat variables for modelling ant biodiversity at landscape scales. Insect Conservation and Diversity, 2015, 8, 43-53.	3.0	3
2	Assessing the Distribution and Protection Status of two Types of Cool Environment to Facilitate Their Conservation under Climate Change. Conservation Biology, 2014, 28, 456-466.	4.7	14
3	Testing the ability of topoclimatic grids of extreme temperatures to explain the distribution of the endangered brushâ€ŧailed rockâ€wallaby (<i>Petrogale penicillata)</i> . Journal of Biogeography, 2014, 41, 1402-1413.	3.0	18
4	The sensitivity of topoclimatic models to fine-scale microclimatic variability and the relevance for ecological studies. Theoretical and Applied Climatology, 2013, 114, 281-289.	2.8	8
5	Moisture, thermal inertia, and the spatial distributions of near-surface soil and air temperatures: Understanding factors that promote microrefugia. Agricultural and Forest Meteorology, 2013, 176, 77-89.	4.8	100
6	Monitoring the ecosystem service provided by dung beetles offers benefits over commonly used biodiversity metrics and a traditional trapping method. Journal for Nature Conservation, 2013, 21, 183-188.	1.8	20
7	The importance of temporal climate variability for spatial patterns in plant diversity. Ecography, 2013, 36, 1341-1349.	4.5	27
8	A novel approach to quantify and locate potential microrefugia using topoclimate, climate stability, and isolation from the matrix. Global Change Biology, 2012, 18, 1866-1879.	9.5	176
9	Combining citizen science, bioclimatic envelope models and observed habitat preferences to determine the distribution of an inconspicuous, recently detected introduced bee (Halictus smaragdulus Vachal) Tj ETQq1 1	. 027.84314	rg⊛T /Ον∈
10	Can ants be used as ecological indicators of restoration progress in dynamic environments? A case study in a revegetated riparian zone. Ecological Indicators, 2011, 11, 1517-1525.	6.3	29
11	Comparison of yellow and white pan traps in surveys of bee fauna in New South Wales, Australia (Hymenoptera: Apoidea: Anthophila). Australian Journal of Entomology, 2011, 50, 174-178.	1.1	43
12	The ratio of exotic-to-native dung beetles can indicate habitat quality in riparian restoration. Insect Conservation and Diversity, 2011, 4, 123-131.	3.0	13
13	Using spider web types as a substitute for assessing web-building spider biodiversity and the success of habitat restoration. Biodiversity and Conservation, 2010, 19, 3141-3155.	2.6	19
14	Using Generalised Dissimilarity Models and many small samples to improve the efficiency of regional and landscape scale invertebrate sampling. Ecological Informatics, 2010, 5, 124-132.	5.2	16
15	Testing common habitat-based surrogates of invertebrate diversity in a semi-arid rangeland. Biodiversity and Conservation, 2009, 18, 1147-1159.	2.6	14