Colin Hong An Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11059632/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene and its electrochemistry – an update. Chemical Society Reviews, 2016, 45, 2458-2493.	38.1	366
2	Microwave Exfoliation of Graphite Oxides in H ₂ S Plasma for the Synthesis of Sulfur-Doped Graphenes as Oxygen Reduction Catalysts. ACS Applied Materials & Interfaces, 2016, 8, 31849-31855.	8.0	39
3	Electrochemical Delamination and Chemical Etching of Chemical Vapor Deposition Graphene: Contrasting Properties. Journal of Physical Chemistry C, 2016, 120, 4682-4690.	3.1	17
4	Soâ€Called "Metalâ€Free―Oxygen Reduction at Graphene Nanoribbons is in fact Metal Driven. ChemCatChem, 2015, 7, 1650-1654.	3.7	22
5	Geographical and Geological Origin of Natural Graphite Heavily Influence the Electrical and Electrochemical Properties of Chemically Modified Graphenes. Chemistry - A European Journal, 2015, 21, 8435-8440.	3.3	13
6	Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride. Journal of Materials Chemistry C, 2014, 2, 856-863.	5.5	34
7	Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13774-13779.	7.1	133
8	Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets. Physical Chemistry Chemical Physics, 2013, 15, 7755.	2.8	8
9	Graphane and hydrogenated graphene. Chemical Society Reviews, 2013, 42, 5987.	38.1	308
10	Graphene Oxide Nanoribbons from the Oxidative Opening of Carbon Nanotubes Retain Electrochemically Active Metallic Impurities. Angewandte Chemie - International Edition, 2013, 52, 8685-8688.	13.8	54
11	Innentitelbild: Graphene Oxide Nanoribbons from the Oxidative Opening of Carbon Nanotubes Retain Electrochemically Active Metallic Impurities (Angew. Chem. 33/2013). Angewandte Chemie, 2013, 125, 8634-8634.	2.0	0
12	Thermally reduced graphenes exhibiting a close relationship to amorphous carbon. Nanoscale, 2012, 4, 4972.	5.6	80
13	Stripping voltammetry at chemically modified graphenes. RSC Advances, 2012, 2, 6068.	3.6	16
14	Direct synthesis of ester-containing indium homoenolate and its application in palladium-catalyzed cross-coupling with aryl halide. Chemical Communications, 2011, 47, 4778.	4.1	40
15	Palladium-Catalyzed Cross-Coupling of Indium Homoenolate with Aryl Halide with Wide Functional Group Compatibility. Organic Letters, 2011, 13, 422-425.	4.6	31
16	Direct Synthesis of Waterâ€Tolerant Alkyl Indium Reagents and Their Application in Palladium atalyzed Couplings with Aryl Halides. Angewandte Chemie - International Edition, 2011, 50, 511-514.	13.8	48
17	Synthesis of Water-Tolerant Indium Homoenolate in Aqueous Media and Its Application in the Synthesis of 1,4-Dicarbonyl Compounds via Palladium-Catalyzed Coupling with Acid Chloride. Journal of the American Chemical Society, 2010, 132, 15852-15855.	13.7	101