William Wan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11058607/publications.pdf Version: 2024-02-01

Αλητική Αλλανι

#	Article	IF	CITATIONS
1	The native structure of the assembled matrix protein 1 of influenza A virus. Nature, 2020, 587, 495-498.	27.8	53
2	Cryo-electron tomography structure of Arp2/3 complex in cells reveals new insights into the branch junction. Nature Communications, 2020, 11, 6437.	12.8	59
3	STOPGAP: A Software Package for Subtomogram Averaging and Refinement. Microscopy and Microanalysis, 2020, 26, 2516-2516.	0.4	29
4	Ebola and Marburg virus matrix layers are locally ordered assemblies of VP40 dimers. ELife, 2020, 9, .	6.0	41
5	VIPP1 rods engulf membranes containing phosphatidylinositol phosphates. Scientific Reports, 2019, 9, 8725.	3.3	35
6	Biogenic regions of cyanobacterial thylakoids form contact sites with the plasma membrane. Nature Plants, 2019, 5, 436-446.	9.3	114
7	Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Ã Journal of Structural Biology, 2017, 199, 187-195.	2.8	219
8	Structure and assembly of the Ebola virus nucleocapsid. Nature, 2017, 551, 394-397.	27.8	185
9	Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. Journal of Structural Biology, 2017, 197, 191-198.	2.8	556
10	An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science, 2016, 353, 506-508.	12.6	375
11	Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nature Structural and Molecular Biology, 2016, 23, 409-415.	8.2	802
12	Rapid Filament Supramolecular Chirality Reversal of HET-s (218–289) Prion Fibrils Driven by pH Elevation. Journal of Physical Chemistry B, 2015, 119, 8521-8525.	2.6	24
13	Structural Studies of Truncated Forms of the Prion Protein PrP. Biophysical Journal, 2015, 108, 1548-1554.	0.5	25
14	Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure. Prion, 2015, 9, 333-338.	1.8	2
15	Heterogeneous seeding of HET-s(218–289) and the mutability of prion structures. Prion, 2014, 8, 178-182.	1.8	3
16	Fungal prion HET-s as a model for structural complexity and self-propagation in prions. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5201-5206.	7.1	28
17	Is Supramolecular Filament Chirality the Underlying Cause of Major Morphology Differences in Amyloid Fibrils?. Journal of the American Chemical Society, 2014, 136, 2302-2312.	13.7	143
18	Fiber Diffraction of the Prion-Forming Domain HET-s(218–289) Shows Dehydration-Induced Deformation of a Complex Amyloid Structure. Biochemistry, 2014, 53, 2366-2370.	2.5	8

#	Article	IF	CITATIONS
19	Heterogeneous Seeding of a Prion Structure by a Generic Amyloid Form of the Fungal Prion-forming Domain HET-s(218–289). Journal of Biological Chemistry, 2013, 288, 29604-29612.	3.4	15
20	Degradation of Fungal Prion HET-s(218-289) Induces Formation ofÂa Generic Amyloid Fold. Biophysical Journal, 2012, 102, 2339-2344.	0.5	24