Ian Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11058031/publications.pdf

Version: 2024-02-01

36	1,659	14	25
papers	citations	h-index	g-index
39	39	39	1584
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Trustable service discovery for highly dynamic decentralized workflows. Future Generation Computer Systems, 2022, 134, 236-246.	7.5	2
2	Efficient orchestration of Node-RED IoT workflows using a Vector Symbolic Architecture. Future Generation Computer Systems, 2020, 111, 117-131.	7.5	7
3	Enabling Discoverable Trusted Services for Highly Dynamic Decentralized Workflows. , 2020, , .		O
4	Support for full life cycle cloud-native application management: Dynamic TOSCA and SWITCH IDE. Future Generation Computer Systems, 2019, 101, 975-982.	7.5	5
5	Towards extending the SWITCH platform for time-critical, cloud-based CUDA applications: Job scheduling parameters influencing performance. Future Generation Computer Systems, 2019, 100, 542-556.	7.5	1
6	Constructing distributed time-critical applications using cognitive enabled services. Future Generation Computer Systems, 2019, 100, 70-85.	7.5	11
7	SWITCH workbench: A novel approach for the development and deployment of time-critical microservice-based cloud-native applications. Future Generation Computer Systems, 2019, 99, 197-212.	7.5	59
8	Dynamic Distributed Orchestration of Node-RED IoT Workflows Using a Vector Symbolic Architecture. , $2018, , .$		7
9	Developing, Provisioning and Controlling Time Critical Applications in Cloud. Communications in Computer and Information Science, 2018, , 169-174.	0.5	2
10	Orchestration and analysis of decentralized workflows within heterogeneous networking infrastructures. Future Generation Computer Systems, 2017, 75, 388-401.	7.5	20
11	Scientific workflows: Past, present and future. Future Generation Computer Systems, 2017, 75, 216-227.	7.5	76
12	Developing and Operating Time Critical Applications in Clouds: The State of the Art and the SWITCH Approach. Procedia Computer Science, 2015, 68, 17-28.	2.0	27
13	Orchestrating workflows over heterogeneous networking infrastructures. , 2015, , .		0
14	Dynamically reconfigurable workflows for time-critical applications. , 2015, , .		20
15	A Software Workbench for Interactive, Time Critical and Highly Self-Adaptive Cloud Applications (SWITCH)., 2015, , .		24
16	Workflows in a Dashboard: A New Generation of Usability. , 2014, , .		9
17	A Case Study into Using Common Real-Time Workflow Monitoring Infrastructure for Scientific Workflows. Journal of Grid Computing, 2013, 11, 381-406.	3.9	13
18	Fine-Grain Interoperability of Scientific Workflows in Distributed Computing Infrastructures. Journal of Grid Computing, 2013, 11, 429-455.	3.9	33

#	Article	IF	Citations
19	Bundle and Pool Architecture for Multi-Language, Robust, Scalable Workflow Executions. Journal of Grid Computing, 2013, 11, 457-480.	3.9	18
20	A General Approach to Real-Time Workflow Monitoring. , 2012, , .		17
21	Client/server messaging protocols in serverless environments. Journal of Network and Computer Applications, 2011, 34, 1366-1379.	9.1	5
22	Object reuse and exchange for publishing and sharing workflows., 2011,,.		3
23	Scientific workflow interoperability framework. International Journal of Business Process Integration and Management, 2010, 5, 93.	0.0	5
24	Web enabling desktop workflow applications. , 2009, , .		4
25	Workflows and e-Science: An overview of workflow system features and capabilities. Future Generation Computer Systems, 2009, 25, 528-540.	7.5	650
26	A scalable super-peer approach for public scientific computation. Future Generation Computer Systems, 2009, 25, 213-223.	7.5	15
27	Scientific Process Automation and Workflow Management. Chapman & Hall/CRC Computational Science, 2009, , .	0.5	44
28	WS-RF Workflow in Triana. International Journal of High Performance Computing Applications, 2008, 22, 268-283.	3.7	30
29	Dynamic Service-Based Integration Of Mobile Clusters In Grids. , 2008, , 159-171.		1
30	Cache for workflows., 2007,,.		2
31	The Web Services Resource Framework in a Peer-to-Peer Context. Journal of Grid Computing, 2006, 4, 425-445.	3.9	10
32	Programming scientific and distributed workflow with Triana services. Concurrency Computation Practice and Experience, 2006, 18, 1021-1037.	2.2	205
33	Triana Generations., 2006,,.		7
34	Visual Grid Workflow in Triana. Journal of Grid Computing, 2005, 3, 153-169.	3.9	115
35	Triana Applications within Grid Computing and Peer to Peer Environments. Journal of Grid Computing, 2003, 1, 199-217.	3.9	95
36	GridLab: Enabling Applications on the Grid. Lecture Notes in Computer Science, 2002, , 39-45.	1.3	13