Farzad Naeim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11057599/publications.pdf Version: 2024-02-01

FADZAD NAEIM

#	Article	IF	CITATIONS
1	Selection and Scaling of Ground Motion Time Histories for Structural Design Using Genetic Algorithms. Earthquake Spectra, 2004, 20, 413-426.	3.1	164
2	On the Use of Design Spectrum Compatible Time Histories. Earthquake Spectra, 1995, 11, 111-127.	3.1	117
3	Performance of tall buildings in Santiago, Chile during the 27 February 2010 offshore Maule, Chile earthquake. Structural Design of Tall and Special Buildings, 2011, 20, 1-16.	1.9	43
4	Performance of tall buildings in ConcepciÃ ³ n during the 27 February 2010 moment magnitude 8.8 offshore Maule, Chile earthquake. Structural Design of Tall and Special Buildings, 2011, 20, 37-64.	1.9	40
5	On Seismic Design Implications of the 1994 Northridge Earthquake Records. Earthquake Spectra, 1995, 11, 91-109.	3.1	32
6	Performance of 20 extensively-instrumented buildings during the 1994 Northridge earthquake. Structural Design of Tall Buildings, 1998, 7, 179-194.	0.3	28
7	The performance of Tall buildings during the 21 September 1999 Chi-Chi earthquake, Taiwan. Structural Design of Tall Buildings, 2000, 9, 137-160.	0.3	26
8	AUTOMATED POST-EARTHQUAKE DAMAGE ASSESSMENT OF INSTRUMENTED BUILDINGS. , 2006, , 117-134.		19
9	FUZZY PATTERN CLASSIFICATION OF STRONG GROUND MOTION RECORDS. Journal of Earthquake Engineering, 2005, 9, 307-332.	2.5	17
10	An overview of building codes and standards in Chile at the time of the 27 February 2010 offshore Maule, Chile earthquake. Structural Design of Tall and Special Buildings, 2010, 19, 853-865.	1.9	15
11	Evolutionary modal identification utilizing coupled shear–flexural response—implication for multistory buildings. Part I : Theory. Structural Design of Tall and Special Buildings, 2006, 15, 51-65.	1.9	13
12	The case for seismic superiority of well-engineered tall buildings. Structural Design of Tall and Special Buildings, 2005, 14, 401-416.	1.9	12
13	Evolutionary modal identification utilizing coupled shear–flexural response—implication for multistory buildings. Part II : Application. Structural Design of Tall and Special Buildings, 2006, 15, 67-103.	1.9	11
14	Accelerographic measurements of the 27 February 2010 offshore Maule, Chile earthquake. Structural Design of Tall and Special Buildings, 2010, 19, 866-875.	1.9	11
15	Real-Time Damage Detection and Performance Evaluation for Buildings. Springer Environmental Science and Engineering, 2013, , 167-196.	0.1	11
16	Research overview: seismic response of structures. Structural Design of Tall Buildings, 1998, 7, 195-215.	0.3	7
17	Did the large coseismic displacement cause the global overturning collapse of the Alto Rio building during the 27 February 2010 Offshore Maule, Chile earthquake?. Structural Design of Tall and Special Buildings, 2010, 19, 876-884.	1.9	4
18	Performance Based Seismic Design of Tall Buildings. Geotechnical, Geological and Earthquake Engineering, 2010, , 147-169.	0.2	4

Farzad Naeim

#	Article	IF	CITATIONS
19	Design practice for tall buildings in Taiwan. Structural Design of Tall Buildings, 2000, 9, 107-115.	0.3	3
20	Performance-Based Seismic Design of Tall Buildings—A USA Perspective. , 2019, , 249-274.		3
21	Implications of the 1994 northridge earthquake ground motions for the seismic design of tall buildings. Structural Design of Tall Buildings, 1994, 3, 247-267.	0.3	2
22	Influence of Hysteretic Deteriorations on Seismic Response of Multistory Steel Frame Buildings. , 2000, , 1.		2
23	Typical construction practices for tall buildings in Taiwan. Structural Design of Tall Buildings, 2000, 9, 117-136.	0.3	1
24	Identification of Input Ground Motion Records for Seismic Design Using Neuro-fuzzy Pattern Recognition and Genetic Algorithms. , 2004, , 1.		1
25	Learning From Seismic Response of Instrumented Buildings During the 1994 Northridge Earthquake. , 2001, , 33-52.		1
26	Evolutionary System Identification of Coupled Shear-Flexural Response for Seismic Damage Detection. , 2006, , 1.		0