Hiroshi Teramura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11055951/publications.pdf

Version: 2024-02-01

643344 651938 28 648 15 25 citations h-index g-index papers 28 28 28 936 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Procedure for the efficient acquisition of progeny seeds from crossed potato plants grafted onto tomato. Plant Biotechnology, 2022, 39, 195-197.	0.5	2
2	3-Amino-4-hydroxybenzoic acid production from glucose and/or xylose via recombinant <i>Streptomyces lividans</i> . Journal of General and Applied Microbiology, 2022, , .	0.4	0
3	Dissection of a rice OsMac1 mRNA 5' UTR to uncover regulatory elements that are responsible for its efficient translation. PLoS ONE, 2021, 16, e0253488.	1.1	4
4	Creation of a potato mutant lacking the starch branching enzyme gene <i>StSBE3</i> that was generated by genome editing using the CRISPR/dMac3-Cas9 system. Plant Biotechnology, 2021, 38, 345-353.	0.5	15
5	A novel FLOURY ENDOSPERM2 (FLO2)-interacting protein, is involved in maintaining fertility and seed quality in rice. Plant Biotechnology, 2020, 37, 47-55.	0.5	7
6	A simple method to establish an efficient medium suitable for potato regeneration. Plant Biotechnology, 2020, 37, 25-30.	0.5	7
7	Versatility of a Dilute Acid/Butanol Pretreatment Investigated on Various Lignocellulosic Biomasses to Produce Lignin, Monosaccharides and Cellulose in Distinct Phases. ACS Sustainable Chemistry and Engineering, 2019, 7, 11069-11079.	3.2	50
8	Effective usage of sorghum bagasse: Optimization of organosolv pretreatment using 25% 1-butanol and subsequent nanofiltration membrane separation. Bioresource Technology, 2018, 252, 157-164.	4.8	48
9	Establishment of a conditional TALEN system using the translational enhancer dMac3 and an inducible promoter activated by glucocorticoid treatment to increase the frequency of targeted mutagenesis in plants. PLoS ONE, 2018, 13, e0208959.	1.1	5
10	Establishment of a modified CRISPR/Cas9 system with increased mutagenesis frequency using the translational enhancer dMac3 and multiple guide RNAs in potato. Scientific Reports, 2018, 8, 13753.	1.6	74
11	Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2017, 101, 5279-5290.	1.7	34
12	Differences in glucose yield of residues from among varieties of rice, wheat, and sorghum after dilute acid pretreatment. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1650-1656.	0.6	2
13	Overexpression of <i>CO₂-responsive CCT protein</i> , a key regulator of starch synthesis strikingly increases the glucose yield from rice straw for bioethanol production. Plant Production Science, 2017, 20, 441-447.	0.9	4
14	Comprehension of an organosolv process for lignin extraction on Festuca arundinacea and monitoring of the cellulose degradation. Industrial Crops and Products, 2016, 94, 308-317.	2.5	21
15	Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnology for Biofuels, 2016, 9, 27.	6.2	68
16	Characterization of cellulose nanofiber sheets from different refining processes. Cellulose, 2016, 23, 403-414.	2.4	40
17	Natural variation in the glucose content of dilute sulfuric acid–pretreated rice straw liquid hydrolysates: implications for bioethanol production. Bioscience, Biotechnology and Biochemistry, 2016, 80, 863-869.	0.6	4
18	Phenyllactic acid production by simultaneous saccharification and fermentation of pretreated sorghum bagasse. Bioresource Technology, 2015, 182, 169-178.	4.8	31

#	Article	IF	CITATION
19	Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae. Bioresource Technology, 2015, 185, 263-268.	4.8	34
20	Precipitate obtained following membrane separation of hydrothermally pretreated rice straw liquid revealed by 2D NMR to have high lignin content. Biotechnology for Biofuels, 2015, 8, 88.	6.2	20
21	3-Amino-4-hydroxybenzoic acid production from sweet sorghum juice by recombinant Corynebacterium glutamicum. Bioresource Technology, 2015, 198, 410-417.	4.8	27
22	Changes in Lignin and Polysaccharide Components in 13 Cultivars of Rice Straw following Dilute Acid Pretreatment as Studied by Solution-State 2D 1H-13C NMR. PLoS ONE, 2015, 10, e0128417.	1.1	26
23	Enhanced translation of the downstream ORF attributed to a long 5^ ^#8242; untranslated region in the OsMac1 gene family members, OsMac2 and OsMac3. Plant Biotechnology, 2014, 31, 221-228.	0.5	12
24	Rre37 stimulates accumulation of 2â€oxoglutarate and glycogen under nitrogen starvation in <i>Synechocystis</i> sp. PCC 6803. FEBS Letters, 2014, 588, 466-471.	1.3	33
25	Simultaneous saccharification and fermentation of kraft pulp by recombinant Escherichia coli for phenyllactic acid production. Biochemical Engineering Journal, 2014, 88, 188-194.	1.8	41
26	Increased ethanol production from sweet sorghum juice concentrated by a membrane separation process. Bioresource Technology, 2014, 169, 821-825.	4.8	18
27	Glucose content in the liquid hydrolysate after dilute acid pretreatment is affected by the starch content in rice straw. Bioresource Technology, 2013, 149, 520-524.	4.8	16
28	A long $5\hat{a} \in ^2$ UTR of the rice OsMac1 mRNA enabling the sufficient translation of the downstream ORF. Plant Biotechnology, 2012, 29, 43-49.	0.5	5