Magdalena Maj-Zurawska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11055838/publications.pdf

Version: 2024-02-01

40 papers

1,250 citations

304743 22 h-index 35 g-index

41 all docs

41 docs citations

times ranked

41

877 citing authors

#	Article	IF	Citations
1	Improving the Detection Limit of Anion-Selective Electrodes:Â An Iodide-Selective Membrane with a Nanomolar Detection Limit. Analytical Chemistry, 2003, 75, 3865-3871.	6.5	113
2	Application of ion-selective electrodes in clinical analysis. Electroanalysis, 1991, 3, 727-734.	2.9	81
3	Factors Affecting the Potentiometric Response of All-Solid-State Solvent Polymeric Membrane Calcium-Selective Electrode for Low-Level Measurements. Analytical Chemistry, 2004, 76, 6410-6418.	6. 5	78
4	All-Solid-State Calcium Solvent Polymeric Membrane Electrode for Low-Level Concentration Measurements. Analytical Chemistry, 2003, 75, 141-144.	6.5	67
5	Comparison of Multiâ€walled Carbon Nanotubes and Poly(3â€octylthiophene) as Ionâ€toâ€Electron Transducers in Allâ€Solidâ€State Potassium Ionâ€Selective Electrodes. Electroanalysis, 2011, 23, 1352-1358.	2.9	63
6	Time-Dependent Phenomena in the Potential Response of Ion-selective Electrodes Treated by the Nernstâ^Planckâ^Poisson Model. 1. Intramembrane Processes and Selectivity. Analytical Chemistry, 2006, 78, 6783-6791.	6.5	58
7	Fully automated potentiometric determination of ionized magnesium in blood serum. Analytica Chimica Acta, 1990, 236, 331-335.	5.4	54
8	Determination of true selectivity coefficients of neutral carrier calcium selective electrode. Mikrochimica Acta, 1991, 103, 285-291.	5.0	53
9	Effect of a plasticizer on the detection limit of calcium-selective electrodes. Journal of Electroanalytical Chemistry, 2002, 537, 111-118.	3.8	52
10	Calcium ion-selective electrodes under galvanostatic current control. Sensors and Actuators B: Chemical, 2005, 108, 836-839.	7.8	46
11	DNA-based electrochemical biosensors for monitoring of bis-indoles as potential antitumoral agents, chemistry, X-ray crystallography. Bioelectrochemistry, 2006, 69, 1-9.	4.6	40
12	lon-selective electrode for measuring low Ca2+ concentrations in the presence of high K+, Na+ and Mg2+ background. Analytical and Bioanalytical Chemistry, 2006, 385, 1477-1482.	3.7	40
13	lonized magnesium in erythrocytes—the best magnesium parameter to observe hypo- or hypermagnesemia. Clinica Chimica Acta, 2004, 349, 67-73.	1.1	36
14	The Influence of the Conditioning Procedure on Potentiometric Characteristics of Solid Contact Calcium-Selective Electrodes in Nanomolar Concentration Solutions. Electroanalysis, 2006, 18, 2232-2242.	2.9	32
15	Magnesium selective electrodes for blood serum studies and water hardness measurement. Mikrochimica Acta, 1988, 96, 283-290.	5.0	31
16	Determination of magnesium and calcium in water with ion-selective electrodes. Analytica Chimica Acta, 1989, 218, 47-59.	5.4	30
17	Optimization of the Composition of Interfaces in Miniature Planar Chloride Electrodes. Electroanalysis, 2003, 15, 1314-1318.	2.9	30
18	The effect of the solvent in the nitrate-selective electrode. Analytica Chimica Acta, 1978, 98, 151-155.	5.4	29

#	Article	IF	CITATIONS
19	Observations on the behaviour of some trifluoroacetophenone derivatives as neutral carriers for carbonate ion-selective electrodes. Analyst, The, 1996, 121, 133-138.	3.5	29
20	Carbonate ion-selective electrode with reduced interference from salicylate. Biosensors and Bioelectronics, 2003, 18, 245-253.	10.1	23
21	Miniature planar chloride electrodes. Sensors and Actuators B: Chemical, 2005, 108, 840-844.	7.8	22
22	Carbonate ion selective electrodes with trifluoroacetophenone derivatives in potentiometric clinical analyser. Talanta, 1997, 44, 1641-1647.	5.5	21
23	Clinical Findings on Human Blood with the KONE ISE for Mg ²⁺ . Scandinavian Journal of Clinical and Laboratory Investigation, 1994, 54, 69-76.	1.2	17
24	Effect of the platinum surface on the potential of nitrate-selective electrodes without internal solution. Analytica Chimica Acta, 1982, 136, 395-398.	5.4	16
25	Ion-selective electrode control based on coulometrically determined stability constants of biologically important calcium and magnesium complexes. Analytica Chimica Acta, 1993, 273, 493-497.	5.4	16
26	lonized and total magnesium level in blood serum and plasma of healthy and III adults. Electroanalysis, 1993, 5, 713-717.	2.9	15
27	The new methods of determination of Mg2+, Ca2+, Na+ and K+ ions in erythrocytes by ion selective electrodes. Sensors and Actuators B: Chemical, 2005, 108, 828-831.	7.8	15
28	lonized magnesium in plasma and erythrocytes for the assessment of low magnesium status in alcohol dependent patients. Drug and Alcohol Dependence, 2017, 178, 271-276.	3.2	15
29	Electrochemical DNA Biosensor for Testing Pentamidine and Its Analogues as Potential Chemotherapeutics. Electroanalysis, 2006, 18, 1422-1430.	2.9	13
30	Selectivity coefficients of ion-selective magnesium electrodes used for simultaneous determination of magnesium and calcium ions. Talanta, 2011, 87, 295-301.	5.5	13
31	Comparison of the Potentiometric, 31P NMR, and Zero-Point Titration Methods of Determining Ionized Magnesium in Erythrocytes. Analytical Biochemistry, 2002, 302, 220-223.	2.4	12
32	Improved selectivity and detection limit of the carbonate-selective electrode. Analytical and Bioanalytical Chemistry, 2003, 376, 524-526.	3.7	12
33	Determination of ionized magnesium in erythrocytes using a potentiometric analyzer. Analytica Chimica Acta, 2001, 448, 251-256.	5.4	9
34	Clinical Findings on Human Blood with the Kone ISE for Mg2+. Scandinavian Journal of Clinical and Laboratory Investigation, 1994, 54, 69-76.	1.2	9
35	Biomimetic study ofÂtheÂCa2+-Mg2+ andÂK+-Li+ antagonism onÂbiologically active sites: new methodology toÂstudy potential dependent ion exchange. Magnesium Research, 2009, 22, 10-20.	0.5	6
36	Phase Transition Detection in Accumulation of a Potential Anticancer Drug Cl-IPBD with DNA: Supercoiled and Linear pUC19 Plasmids. Electrochimica Acta, 2016, 210, 422-434.	5.2	5

#	Article	IF	CITATIONS
37	Voltammetric and Spectrophotometric Studies on DNA Interacting with Daunorubicin and its Amidino Derivatives. Electroanalysis, 2017, 29, 172-181.	2.9	5
38	Supercoiled and linear plasmid DNAs interactions with methylene blue. Bioelectrochemistry, 2013, 92, 32-41.	4.6	3
39	Level of magnesium in psychiatry – What is the cause of ambiguous results?. General Hospital Psychiatry, 2018, 51, 136.	2.4	2
40	Electrochemical characterization of LHCII on graphite electrodes – Potential-dependent photoactivation and arrangement of complexes. Bioelectrochemistry, 2019, 127, 37-48.	4.6	1