Jean-Marc Greneche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1105534/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chemical Communications, 2007, , 2820-2822.	2.2	1,218
2	Mixed-Valence Li/Fe-Based Metal–Organic Frameworks with Both Reversible Redox and Sorption Properties. Angewandte Chemie - International Edition, 2007, 46, 3259-3263.	7.2	583
3	Hydrothermal Synthesis of Monodisperse Magnetite Nanoparticles. Chemistry of Materials, 2006, 18, 4399-4404.	3.2	558
4	Controlled Reducibility of a Metal–Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption. Angewandte Chemie - International Edition, 2010, 49, 5949-5952.	7.2	526
5	Superparamagnetic MFe ₂ O ₄ (M = Fe, Co, Mn) Nanoparticles: Tuning the Particle Size and Magnetic Properties through a Novel One-Step Coprecipitation Route. Chemistry of Materials, 2012, 24, 1496-1504.	3.2	446
6	Functionalization in Flexible Porous Solids: Effects on the Pore Opening and the Hostâ^'Guest Interactions. Journal of the American Chemical Society, 2010, 132, 1127-1136.	6.6	445
7	Phosphate Adsorption Properties of Magnetite-Based Nanoparticles. Chemistry of Materials, 2007, 19, 4494-4505.	3.2	368
8	Magnetic properties of nanostructured ferrimagnetic zinc ferrite. Journal of Physics Condensed Matter, 2000, 12, 7795-7805.	0.7	306
9	Magnetic Iron Oxide Nanoparticles in 10â^'40 nm Range: Composition in Terms of Magnetite/Maghemite Ratio and Effect on the Magnetic Properties. Chemistry of Materials, 2011, 23, 1379-1386.	3.2	303
10	Coupling Agent Effect on Magnetic Properties of Functionalized Magnetite-Based Nanoparticles. Chemistry of Materials, 2008, 20, 5869-5875.	3.2	298
11	Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. Chemical Communications, 2008, , 4732.	2.2	274
12	Surface-related properties of Î ³ -Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 2000, 221, 63-79.	1.0	272
13	Biodegradable therapeutic MOFs for the delivery of bioactive molecules. Chemical Communications, 2010, 46, 4526.	2.2	267
14	Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe). Journal of Materials Chemistry, 2011, 21, 1226-1233.	6.7	251
15	Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Canting. Journal of Physical Chemistry C, 2014, 118, 3795-3810.	1.5	250
16	Comparison of Porous Iron Trimesates Basolite F300 and MIL-100(Fe) As Heterogeneous Catalysts for Lewis Acid and Oxidation Reactions: Roles of Structural Defects and Stability. ACS Catalysis, 2012, 2, 2060-2065.	5.5	213
17	Synthesis, Structure, Characterization, and Redox Properties of the Porous MILâ€68(Fe) Solid. European Journal of Inorganic Chemistry, 2010, 2010, 3789-3794.	1.0	191
18	Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochimica Et Cosmochimica Acta, 2007, 71, 5731-5749.	1.6	181

#	Article	IF	CITATIONS
19	Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE=La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. Journal of Magnetism and Magnetic Materials, 2008, 320, 3242-3250.	1.0	174
20	Bioinspired Iron Sulfide Nanoparticles for Cheap and Long-Lived Electrocatalytic Molecular Hydrogen Evolution in Neutral Water. ACS Catalysis, 2014, 4, 681-687.	5.5	164
21	Redox potential measurements and Mössbauer spectrometry of Fell adsorbed onto Fell (oxyhydr)oxides. Geochimica Et Cosmochimica Acta, 2005, 69, 4801-4815.	1.6	135
22	Surface effects in noninteracting and interacting Î ³ -Fe2O3 nanoparticles. Journal of Magnetism and Magnetic Materials, 2003, 262, 6-14.	1.0	126
23	Surface anisotropy in ferromagnetic nanoparticles. Journal of Applied Physics, 2002, 91, 8715.	1.1	115
24	Cationic distribution and spin canting in CoFe ₂ O ₄ nanoparticles. Journal of Physics Condensed Matter, 2011, 23, 426004.	0.7	114
25	Electrostatically driven charge-ordering in Fe2OBO3. Nature, 1998, 396, 655-658.	13.7	108
26	Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. Journal of Alloys and Compounds, 2010, 504, 395-402.	2.8	107
27	[Fe4(PO4)4F2(H2O)3] · [C6H14N2] or ULM-12, the first magnetic ferric phosphate with an open structure: Hydrothermal synthesis, structure, and magnetic propertie. Zeolites, 1996, 17, 250-260.	0.9	105
28	Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis. ACS Catalysis, 2016, 6, 2626-2631.	5.5	105
29	Magnetic properties of Zn-substituted MnFe ₂ O ₄ nanoparticles synthesized in polyol as potential heating agents for hyperthermia. Evaluation of their toxicity on Endothelial cells. Chemistry of Materials, 2010, 22, 5420-5429.	3.2	104
30	The titration of clay minerals. Journal of Colloid and Interface Science, 2004, 273, 224-233.	5.0	102
31	Néel temperature enhancement in nanostructured nickel zinc ferrite. Applied Physics Letters, 2005, 86, 192510.	1.5	102
32	Crystal and Magnetic Structure of YBaCuFeO5. Journal of Solid State Chemistry, 1995, 114, 24-35.	1.4	100
33	Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: I. The fitting model for the Mössbauer spectra. Journal of Physics Condensed Matter, 1997, 9, 2303-2319.	0.7	98
34	Insights into the Mechanism Related to the Phase Transition from γ-Fe ₂ O ₃ to α-Fe ₂ O ₃ Nanoparticles Induced by Thermal Treatment and Laser Irradiation. Journal of Physical Chemistry C, 2012, 116, 23785-23792.	1.5	98
35	On the texture problem in Mossbauer spectroscopy. Journal of Physics C: Solid State Physics, 1982, 15, 5333-5344.	1.5	97
36	New evidences of <i>in situ</i> laser irradiation effects on γâ€Fe ₂ O ₃ nanoparticles: a Raman spectroscopic study. Journal of Raman Spectroscopy, 2011, 42, 239-242.	1.2	97

#	Article	IF	CITATIONS
37	Structural properties of Fe50Co50 nanostructured powder prepared by mechanical alloying. Journal of Alloys and Compounds, 2005, 386, 12-19.	2.8	95
38	Direct phase transformation from hematite to maghemite during high energy ball milling. Materials Letters, 2001, 47, 150-158.	1.3	94
39	Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis, and magnetic properties. Journal of Physics Condensed Matter, 2004, 16, 4357-4372.	0.7	93
40	Removal of cationic dyes from aqueous solutions using N-benzyl-O-carboxymethylchitosan magnetic nanoparticles. Chemical Engineering Journal, 2012, 183, 284-293.	6.6	92
41	Electrical and magnetic properties of chemically derived nanocrystalline cobalt ferrite. Journal of Applied Physics, 2007, 102, .	1.1	88
42	Hydrothermal Synthesis, Structure, and Magnetic Properties of a Novel Monodimensional Iron Phosphate:  [FeF(HPO4)2,N2C3H12,(H2O)x] (x â‰^ 0.20) (ULM-14). Inorganic Chemistry, 1997, 36, 2187-2	190.	81
43	Magnetic properties of zinc ferrite nanoparticles synthesized by hydrolysis in a polyol medium. Journal of Physics Condensed Matter, 2006, 18, 9055-9069.	0.7	73
44	Series of Porous 3-D Coordination Polymers Based on Iron(III) and Porphyrin Derivatives. Chemistry of Materials, 2011, 23, 4641-4651.	3.2	73
45	The impact of oscillating redox conditions: Arsenic immobilisation in contaminated calcareous floodplain soils. Environmental Pollution, 2013, 178, 254-263.	3.7	73
46	Maghemite-nanoMIL-100(Fe) Bimodal Nanovector as a Platform for Image-Guided Therapy. CheM, 2017, 3, 303-322.	5.8	72
47	Reversible surface-sorption-induced electron-transfer oxidation of Fe(II) at reactive sites on a synthetic clay mineral. Geochimica Et Cosmochimica Acta, 2007, 71, 863-876.	1.6	71
48	Tuning of Synthesis Conditions by Thermal Decomposition toward Core–Shell Co _{<i>x</i>} Fe _{1–<i>x</i>} O@Co _{<i>y</i>} Fe _{3–<i>y</i>} O <su and CoFe₂O₄ Nanoparticles with Spherical and Cubic Shapes. Chemistry of Materials, 2014, 26, 5063-5073.</su 	ub>43.2	^{)>} 70
49	High Exchange Bias in Fe _{3â[~]î´} O ₄ @CoO Core Shell Nanoparticles Synthesized by a One-Pot Seed-Mediated Growth Method. Journal of Physical Chemistry C, 2013, 117, 11436-11443.	1.5	66
50	Magnetic interaction evidence in α-Fe2O3 nanoparticles by magnetization and Mössbauer measurements. Journal of Magnetism and Magnetic Materials, 1999, 204, 29-35.	1.0	64
51	Isomorphous Substitution in a Flexible Metal–Organic Framework: Mixed-Metal, Mixed-Valent MIL-53 Type Materials. Inorganic Chemistry, 2013, 52, 8171-8182.	1.9	64
52	Microstructural investigation and magnetic properties of CoFe2O4nanowires synthesized inside carbon nanotubes. Physical Chemistry Chemical Physics, 2003, 5, 3716-3723.	1.3	63
53	New contributions to the understanding of rust layer formation in steels exposed to a total immersion test. Corrosion Science, 2006, 48, 2813-2830.	3.0	63
54	Direct accessibility of mixed-metal (<scp>iii</scp> ii) acid sites through the rational synthesis of porous metal carboxylates. Chemical Communications, 2015, 51, 10194-10197.	2.2	63

#	Article	IF	CITATIONS
55	Study of the iron/trimesic acid system for the hydrothermal synthesis of hybrid materials. Journal of Materials Chemistry, 2001, 11, 3166-3171.	6.7	62
56	Nanocomposite Pyrite–Greigite Reactivity toward Se(IV)/Se(VI). Environmental Science & Technology, 2012, 46, 4869-4876.	4.6	62
57	Microwave Absorption and the Magnetic Hyperthermia Applications of Li _{0.3} Zn _{0.3} Co _{0.1} Fe _{2.3} O ₄ Nanoparticles in Multiwalled Carbon Nanotube Matrix. ACS Applied Materials & Interfaces, 2017, 9, 40831-40845.	4.0	62
58	Structure and Mössbauer Studies of Fâ`'O Ordering in Antiferromagnetic Perovskite PbFeO2F. Chemistry of Materials, 2005, 17, 1386-1390.	3.2	61
59	Iron oxide nanoparticles hosted in silica aerogels. Applied Physics A: Materials Science and Processing, 2002, 74, 591-597.	1.1	60
60	Size-dependent magnetic properties of CoFe ₂ O ₄ nanoparticles prepared in polyol. Journal of Physics Condensed Matter, 2011, 23, 506001.	0.7	60
61	Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles. Nanoscale, 2015, 7, 13576-13585.	2.8	60
62	Annealing Effect on the Magnetic Properties of Polyol-made Niâ^'Zn Ferrite Nanoparticles. Chemistry of Materials, 2010, 22, 1350-1366.	3.2	59
63	Mössbauer spectrometry of Fe(Cu)MB-type nanocrystalline alloys: II. The topography of hyperfine interactions in Fe(Cu)ZrB alloys. Journal of Physics Condensed Matter, 1997, 9, 2321-2347.	0.7	58
64	Magnetic properties of nanostructured ball-milled Fe and Fe50Co50alloy. Journal of Physics Condensed Matter, 2006, 18, 7257-7272.	0.7	56
65	Characterisation of iron inclusion during the formation of calcium sulfoaluminate phase. Cement and Concrete Research, 2010, 40, 1314-1319.	4.6	56
66	Iron and Porphyrin Metal–Organic Frameworks: Insight into Structural Diversity, Stability, and Porosity. Crystal Growth and Design, 2015, 15, 1819-1826.	1.4	55
67	Synthesis, structure and properties of a semivalent iron oxoborate, Fe2OBO3. Journal of Materials Chemistry, 1999, 9, 205-209.	6.7	54
68	New analysis of the Mössbauer spectra of akaganeite. Journal of Physics Condensed Matter, 2006, 18, 6827-6840.	0.7	51
69	Local Atomic Structure and Magnetic Ordering of Iron in Feâ^'Chitosan Complexes. Biomacromolecules, 2008, 9, 1586-1594.	2.6	51
70	Microstructural Investigation of Magnetic CoFe2O4Nanowires inside Carbon Nanotubes by Electron Tomography. Nano Letters, 2008, 8, 1033-1040.	4.5	50
71	Ferrimagnetic ordering in nanostructured zinc ferrite. Scripta Materialia, 2001, 44, 1407-1410.	2.6	48
72	Synthesis, Structure, and Mössbauer Study of [Fe(H2O)2(C9O6H4)]·H2O: A Two-Dimensional Iron(II) Trimellitate (MIL-67). Inorganic Chemistry, 2003, 42, 5669-5674.	1.9	48

#	Article	IF	CITATIONS
73	The first ferric carboxylate with a three-dimensional hydrid open-framework (MIL-82): its synthesis, structure, magnetic behavior and study of its dehydration by Mössbauer spectroscopy. Solid State Sciences, 2004, 6, 853-858.	1.5	48
74	Isomorphous Substitution of Transition-Metal Ions in the Nanoporous Nickel Phosphate VSB-5. Journal of Physical Chemistry B, 2005, 109, 845-850.	1.2	48
75	Effect of mechanical milling on the electrical and magnetic properties of nanostructured Ni0.5Zn0.5Fe2O4. Journal Physics D: Applied Physics, 2006, 39, 4688-4694.	1.3	47
76	Adsorption of Hydrogen Gas and Redox Processes in Clays. Environmental Science & Technology, 2012, 46, 3574-3579.	4.6	47
77	Structural behavior of laser-irradiated Î ³ -Fe ₂ O ₃ nanocrystals dispersed in porous silica matrix : Î ³ -Fe ₂ O ₃ to α-Fe ₂ O ₃ to î±-Fe ₂ O ₃ Advanced transition and formation of ε-Fe ₂ O ₃ . Science and Technology of Advanced Materials. 2016. 17. 597-609.	2.8	47
78	Evolution of REFe2 (RE = rare earth) phase in Nd-Ce-Fe-B magnets and resultant Ce segregation. Scripta Materialia, 2019, 170, 150-155.	2.6	47
79	Effect of boron on structural and magnetic properties of the Fe60Al40 system prepared by mechanical alloying. Journal of Alloys and Compounds, 2005, 398, 26-32.	2.8	46
80	β-Cu3Fe4(VO4)6: Structural Study and Relationships; Physical Properties. Journal of Solid State Chemistry, 1994, 108, 1-10.	1.4	45
81	Ferrimagnetic ordering in nanostructured CdFe2O4 spinel. Journal of Applied Physics, 2001, 90, 527-529.	1.1	45
82	Synthesis, Characterization, and Properties of an Open-Framework Iron(III) Dicarboxylate:Â MIL-85 or FeIII2O{O2Câ^'CH3}2{O2Câ^'C6H4â^'CO2}·2CH3OH. Chemistry of Materials, 2004, 16, 2706-2711.	3.2	44
83	Study of alloying mechanisms of ball milled Fe–Cr and Fe–Cr–Co powders. Journal of Magnetism and Magnetic Materials, 2005, 288, 282-296.	1.0	44
84	Magnetism in non-stoichiometric goethite of varying total water content and surface area. Geophysical Journal International, 2006, 164, 331-339.	1.0	44
85	Systematic Study of Exchange Coupling in Core–Shell Fe _{3â^îí} O ₄ @CoO Nanoparticles. Chemistry of Materials, 2015, 27, 4073-4081.	3.2	44
86	Grain boundary engineering towards high-figure-of-merit Nd-Ce-Fe-B sintered magnets: Synergetic effects of (Nd, Pr)Hx and Cu co-dopants. Acta Materialia, 2021, 204, 116529.	3.8	44
87	Spin Canting of Maghemite Studied by NMR and In-Field Mössbauer Spectrometry. Journal of Physical Chemistry C, 2010, 114, 8794-8799.	1.5	43
88	Enhanced Néel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion. Nanotechnology, 2009, 20, 185704.	1.3	42
89	Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using Euglena gracilis microalgae. Colloids and Surfaces B: Biointerfaces, 2012, 93, 20-23.	2.5	42
90	Structural and magnetic properties of metastable Fe1-xSix(0.15 <x<0.34) 14,="" 1985-2000.<="" 2002,="" a="" alloys="" by="" condensed="" journal="" matter,="" of="" physics="" prepared="" rapid-quenching="" td="" technique.=""><td>0.7</td><td>41</td></x<0.34)>	0.7	41

#	Article	IF	CITATIONS
91	Adsorption of Cr(VI) on crosslinked chitosan–Fe(III) complex in fixed-bed systems. Journal of Water Process Engineering, 2015, 7, 141-152.	2.6	41
92	Hydrothermal Synthesis, Powder Structural Determination, and Magnetic Study of the Novel Hydrated Iron Diphosphonate [Fe2(H2O)2(O3P–CH2–PO3H)2](H2O)2 or MIL-13. Journal of Solid State Chemistry, 1999, 147, 122-131.	1.4	40
93	Surface anisotropy in maghemite nanoparticles. Physica B: Condensed Matter, 2006, 384, 221-223.	1.3	40
94	Synthesis, characterization and in vitro drug release of magnetic N-benzyl-O-carboxymethylchitosan nanoparticles loaded with indomethacin. Acta Biomaterialia, 2011, 7, 3078-3085.	4.1	40
95	Thermomechanical Polymer Binder Reactivity with Positive Active Materials for Li Metal Polymer and Li-Ion Batteries: An XPS and XPS Imaging Study. ACS Applied Materials & Interfaces, 2019, 11, 18368-18376.	4.0	40
96	Cation exchanged Fe(II) and Sr compared to other divalent cations (Ca,Mg) in the bure Callovian–Oxfordian formation: Implications for porewater composition modelling. Applied Geochemistry, 2008, 23, 641-654.	1.4	39
97	A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release. Soft Matter, 2014, 10, 3441.	1.2	39
98	Enhancing the magnetic anisotropy of maghemite nanoparticles via the surface coordination of molecular complexes. Nature Communications, 2015, 6, 10139.	5.8	39
99	Lost iron and iron converted into rust in steels submitted to dry–wet corrosion process. Corrosion Science, 2008, 50, 763-772.	3.0	38
100	Unravelling the effect of interparticle interactions and surface spin canting in <i>γ</i> -Fe2O3@SiO2 superparamagnetic nanoparticles. Journal of Applied Physics, 2011, 109, .	1.1	38
101	Grain size effect on the phase transformation temperature of nanostructured CuFe2O4. Journal of Applied Physics, 2011, 109, .	1.1	38
102	Influences of element segregation on the magnetic properties in nanocrystalline Nd-Ce-Fe-B alloys. Materials Characterization, 2019, 148, 208-213.	1.9	38
103	Magnetically Recoverable Palladium(0) Nanocomposite Catalyst for Hydrogenation Reactions in Water. ChemCatChem, 2015, 7, 309-315.	1.8	37
104	Atomic scale modeling of iron-doped biphasic calcium phosphate bioceramics. Acta Biomaterialia, 2017, 50, 78-88.	4.1	36
105	Spectroscopic studies of arsenic retention onto biotite. Chemical Geology, 2011, 281, 83-92. Microstructure and magnetism of nanoparticles with mml:math	1.4	35
106	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mi>³</mml:mi> <mml:mtext>-Fe</mml:mtext> </mml:mrow> cc surrounded by <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mi>¹/₁ </mml:mi> <mml:mtext>-Fe</mml:mtext> </mml:mrow> </mml:math> ar	re _{1.1}	34
107	FellI/Fell regular charge order in metal–organic framework. Chemical Communications, 2010, 46, 7987.	2.2	34
108	Tin- and titanium-doped Î ³ -Fe2O3(maghemite). Journal of Physics Condensed Matter, 2001, 13, 10785-10797.	0.7	32

#	Article	IF	CITATIONS
109	Iron-Doped (La,Sr)MnO3 Manganites as Promising Mediators of Self-Controlled Magnetic Nanohyperthermia. Nanoscale Research Letters, 2016, 11, 24.	3.1	32
110	Structure–Property–Function Relationships of Iron Oxide Multicore Nanoflowers in Magnetic Hyperthermia and Photothermia. ACS Nano, 2022, 16, 271-284.	7.3	32
111	Iron-based nanocrystalline alloys investigated by 57Fe Mössbauer spectrometry. , 2000, 126, 27-34.		31
112	Microstructural modelling of nanostructured fluoride powders prepared by mechanical milling. Journal of Physics Condensed Matter, 2000, 12, 4791-4798.	0.7	31
113	Synthesis, structure and metamagnetic behaviour of a three-dimensional Fe(II) carboxyethylphosphonate: [Fe3(OH)2(H2O)4(O3Pî—,(CH2)2î—,CO2H)2] or MIL-38. Solid State Sciences, 2002, 4, 619-625.	1.5	31
114	Synthesis, Mössbauer Characterization, and Ab Initio Modeling of Iron Oxide Nanoparticles of Medical Interest Functionalized by Dopamine. Journal of Physical Chemistry C, 2013, 117, 14295-14302.	1.5	31
115	Ferrimagnetic order in Ca2FeMoO6. Journal of Applied Physics, 2000, 87, 7118-7120.	1.1	30
116	Gold–iron oxide dimers for magnetic hyperthermia: the key role of chloride ions in the synthesis to boost the heating efficiency. Journal of Materials Chemistry B, 2017, 5, 4587-4594.	2.9	30
117	Aggregation Control of Hydrophilic Maghemite (γ-Fe ₂ O ₃) Nanoparticles by Surface Doping Using Cerium Atoms. Journal of the American Chemical Society, 2010, 132, 12519-12521.	6.6	29
118	Structure and magnetic properties of nanocrystalline ferrimagnetic CdFe 2 O 4 spinel. Scripta Materialia, 2001, 44, 1411-1415.	2.6	28
119	Design of stable mixed-metal MIL-101(Cr/Fe) materials with enhanced catalytic activity for the Prins reaction. Journal of Materials Chemistry A, 2020, 8, 17002-17011.	5.2	28
120	Carbon nanotubes as a template for mild synthesis of magnetic CoFe2O4 nanowires. Carbon, 2004, 42, 1395-1399.	5.4	27
121	Synthesis of Transition-Metal-Incorporated Nickel Phosphate Molecular Sieves TMIâ^'VSB-1. Chemistry of Materials, 2004, 16, 5552-5555.	3.2	27
122	Effect of ball-milling and Fe-/Al-doping on the structural aspect and visible light photocatalytic activity of TiO2 towards Escherichia coli bacteria abatement. Materials Science and Engineering C, 2014, 38, 11-19.	3.8	27
123	New series of hybrid fluoroferrates synthesized with triazoles: various dimensionalities and M¶ssbauer studies. Dalton Transactions, 2013, 42, 15748.	1.6	26
124	Improvement of Thermal Stability of Maghemite Nanoparticles Coated with Oleic Acid and Oleylamine Molecules: Investigations under Laser Irradiation. Journal of Physical Chemistry C, 2015, 119, 10662-10668.	1.5	26
125	Low Oxidation State and Enhanced Magnetic Properties Induced by Raspberry Shaped Nanostructures of Iron Oxide. Journal of Physical Chemistry C, 2015, 119, 24665-24673.	1.5	25
126	Amorphous Iron–Manganese Oxyfluorides, Promising Catalysts for Oxygen Evolution Reaction under Acidic Media. ACS Applied Energy Materials, 2021, 4, 1173-1181.	2.5	25

#	Article	IF	CITATIONS
127	Mild synthesis of CoFe2O4 nanowires using carbon nanotube template: a high-coercivity material at room temperature. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1642-1644.	1.0	24
128	Magnetic properties of FeCo alloy nanoparticles synthesized through instant chemical reduction. Journal of Applied Physics, 2016, 120, .	1.1	24
129	Hydrothermal synthesis, structural approach, magnetic and Mössbauer study of the layered Fe(III) carboxyethylphosphonate [Fe(OH)(H2O)(O3P-(CH2)2-CO2H)] or MIL-37. Solid State Sciences, 2000, 2, 717-724.	1.5	23
130	Effect of chain length and electrical charge on properties of ammonium-bearing bisphosphonate-coated superparamagnetic iron oxide nanoparticles: formulation and physicochemical studies. Journal of Nanoparticle Research, 2010, 12, 1239-1248.	0.8	23
131	Enhanced heterotrophic denitrification in clay media: The role of mineral electron donors. Chemical Geology, 2014, 390, 87-99.	1.4	23
132	Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications. Nanoscale, 2021, 13, 14552-14571.	2.8	23
133	Magnetic properties of nanocomposites containing Fe-Ni or Fe dispersed in a Mn-Zn ferrite matrix. IEEE Transactions on Magnetics, 2002, 38, 3015-3017.	1.2	22
134	Hydrothermal Synthesis, Structure, and Magnetic Properties of a Layered Fe(III) Carboxymethylphosphonate: [Fe(H2O)(O3P–CH2–CO2)] or MIL-49. Journal of Solid State Chemistry, 2002, 164, 354-360.	1.4	22
135	Combining Soft Chemistry and Spark Plasma Sintering to Produce Highly Dense and Finely Grained Soft Ferrimagnetic <scp><scp>Y</scp></scp>	u <mark>b</mark> ?12 <td>ub?</td>	u b ?
136	Influence of microstructure on the magnetic and mechanical behaviour of amorphous and nanocrystalline FeNbB alloy. Journal of Physics Condensed Matter, 2002, 14, 4717-4736.	0.7	21
137	Structural and Magnetic Properties of Nanostructured Oxides Investigated by57Fe Mössbauer Spectrometry. Hyperfine Interactions, 2003, 148/149, 79-89.	0.2	21
138	Thermodynamic properties of saponite, nontronite, and vermiculite derived from calorimetric measurements. American Mineralogist, 2013, 98, 1834-1847.	0.9	21
139	Eighteen years of steel–bentonite interaction in the FEBEX in situ test at the Grimsel Test Site in Switzerland. Clays and Clay Minerals, 2019, 67, 111-131.	0.6	21
140	MÂssbauer, magnetization and crystal structure studies of the double perovskites Sr2FeMo1ÂxWxO6,x 0, 0.1, 0.2, 0.3 and 0.4. Journal of Physics Condensed Matter, 2002, 14, 12611-12627.	0.7	20
141	Metastable (Bi, M) ₂ (Fe, Mn, Bi) ₂ O _{6+<i>x</i>} (M = Na or K) Pyrochlores from Hydrothermal Synthesis. Inorganic Chemistry, 2014, 53, 13197-13206.	1.9	20
142	Hydrothermal Synthesis, Structure, and Magnetic Characterization of a New Ferrimagnetic Open Framework Phosphate: MIL-21 or [FeIII5â^xVIIIx(H2PO4)4(HPO4)4F4(H2O)2, 4(H2+yN–(CH2)2–NH2+y)] wit a Partial Cationic Disorder. Journal of Solid State Chemistry, 1999, 148, 150-157.	h1.4	19
143	The effects of Sc and Nb substitution in Sr2FeReO6 double perovskites. A combined study of XÂray powder diffraction and Mössbauer spectroscopy. Journal of Materials Chemistry, 2001, 11, 253-256.	6.7	19
144	Temperature behaviour of iron nanograins in Nanoperm-type alloys. Journal of Physics Condensed Matter, 2003, 15, 5637-5648.	0.7	19

#	Article	IF	CITATIONS
145	The Contribution of 57Fe Mössbauer Spectrometry to Investigate Magnetic Nanomaterials. , 2013, , 187-241.		19
146	On the exact crystal structure of exchange-biased Fe ₃ O ₄ –CoO nanoaggregates produced by seed-mediated growth in polyol. CrystEngComm, 2016, 18, 3799-3807.	1.3	19
147	Effects of a thermal perturbation on mineralogy and pore water composition in a clay-rock: An experimental and modeling study. Geochimica Et Cosmochimica Acta, 2017, 197, 193-214.	1.6	19
148	Exchangeâ€Biased Fe _{3â^'} <i>_x</i> O ₄ oO Granular Composites of Different Morphologies Prepared by Seedâ€Mediated Growth in Polyol: From Core–Shell to Multicore Embedded Structures. Particle and Particle Systems Characterization, 2018, 35, 1800104.	1.2	19
149	Confinement of Fe–Al-PMOF catalytic sites favours the formation of pyrazoline from ethyl diazoacetate with an unusual sharp increase of selectivity upon recycling. Chemical Communications, 2018, 54, 10308-10311.	2.2	19
150	Magnetic hyperfine temperature dependence in Fe–Si crystalline alloys. Solid State Communications, 1999, 111, 323-327.	0.9	18
151	Maghemite Nanoparticles with Enhanced Magnetic Properties: One-Pot Preparation and Ultrastable Dextran Shell. ACS Applied Materials & Interfaces, 2018, 10, 20271-20280.	4.0	18
152	New Amorphous Iron-Based Oxyfluorides as Cathode Materials for High-Capacity Lithium-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 21386-21394.	1.5	18
153	Structural and magnetic properties of the intergranular amorphous phase in FeNbB nanocrystalline alloys. Journal of Physics Condensed Matter, 2000, 12, 9085-9093.	0.7	17
154	[H3tren]3+ templated iron fluorides; synthesis, crystal structures and Mössbauer studies. Solid State Sciences, 2009, 11, 1631-1638.	1.5	17
155	Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	17
156	The effect of temperature on carbon steel corrosion under geological conditions. Applied Geochemistry, 2015, 52, 76-85.	1.4	17
157	Genetic manipulation of iron biomineralization enhances MR relaxivity in a ferritin-M6A chimeric complex. Scientific Reports, 2016, 6, 26550.	1.6	17
158	Effect of reaction environment and <i>in situ</i> formation of the precursor on the composition and shape of iron oxide nanoparticles synthesized by the thermal decomposition method. CrystEngComm, 2018, 20, 7206-7220.	1.3	17
159	Properties of Goethite Grown under the Presence of Cr3+, Cu2+and Mn2+Ions. Hyperfine Interactions, 2003, 148/149, 135-144.	0.2	16
160	Phase transformations in CaCO ₃ /iron oxide composite induced by thermal treatment and laser irradiation. Journal of Raman Spectroscopy, 2013, 44, 489-495.	1.2	16
161	Synthesis engineering of iron oxide raspberry-shaped nanostructures. Nanoscale, 2017, 9, 305-313.	2.8	16
162	Synthesis by Thermal Decomposition of Two Iron Hydroxyfluorides: Structural Effects of Li Insertion. Chemistry of Materials, 2019, 31, 4246-4257.	3.2	16

#	Article	IF	CITATIONS
163	Effects of Sm content on the phase structure, microstructure and magnetic properties of the Sm Zr0.2(Fe0·8Co0.2)11.5Ti0.5 (x=0.8–1.4) alloys. Journal of Alloys and Compounds, 2020, 828, 154428.	2.8	16
164	Textured (Ce,La,Y)–Fe–B permanent magnets by hot deformation. Journal of Materials Research and Technology, 2022, 17, 1459-1468.	2.6	16
165	The influence of ruthenium on the magnetic properties of Â-Fe2O3(maghemite) studied by MÂssbauer spectroscopy. Journal of Physics Condensed Matter, 2003, 15, 2907-2915.	0.7	15
166	New iron tetrazolate frameworks: synthesis, temperature effect, thermal behaviour, Mössbauer and magnetic studies. Dalton Transactions, 2015, 44, 7951-7959.	1.6	15
167	New Features and Uncovered Benefits of Polycrystalline Magnetite as Reusable Catalyst in Reductive Chemical Conversion. Journal of Physical Chemistry C, 2017, 121, 25195-25205.	1.5	15
168	Giant Exchangeâ€Bias in Polyolâ€Made CoFe ₂ O ₄ oO Core–Shell Like Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1800290.	1.2	15
169	Harnessing Composition of Iron Oxide Nanoparticle: Impact of Solvent-Mediated Ligand–Ligand Interaction and Competition between Oxidation and Growth Kinetics. Chemistry of Materials, 2020, 32, 9245-9259.	3.2	15
170	Magnetic properties of the FexMn0.600 \$minus\$xAl0.400, 0.200 \$leq\$ x \$leq\$ 0.600, disordered alloy series. Journal of Physics Condensed Matter, 2002, 14, 6531-6542.	0.7	14
171	Mössbauer studies of Sr2FeMoO6 and related compounds. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 744-746.	1.0	14
172	Synthesis, structure of [H3dien]·(MF6)·H2O (M=Cr, Fe) and 57Fe Mössbauer study of [H3dien]·(FeF6)·H20 Journal of Solid State Chemistry, 2007, 180, 1911-1917.). 1.4	14
173	Exchange-biased oxide-based core–shell nanoparticles produced by seed-mediated growth in polyol. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	14
174	lron Stearate Structures: An Original Tool for Nanoparticles Design. Inorganic Chemistry, 2021, 60, 12445-12456.	1.9	14
175	Temperature dependence of amorphous and interface phases in the Fe80Nb7Cu1B12 nanocrystalline alloy. , 1999, 122, 121-128.		13
176	Synthesis of Magnetite in Presence of Cu2+ or Cr3+. Hyperfine Interactions, 2001, 134, 141-152.	0.2	13
177	Tetrahedrally Coordinated Iron(II) Incorporation in the Super-Sodalite Aluminophosphate Fe3Al6(PO4)12·4tren·17H2O (MIL-74). Chemistry of Materials, 2003, 15, 4590-4597.	3.2	13
178	A novel and easy chemical-clock synthesis of nanocrystalline iron–cobalt bearing layered double hydroxides. Journal of Colloid and Interface Science, 2014, 434, 130-140.	5.0	13
179	Temperature Mössbauer effect study of nanocrystalline FeMCuB alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 937-940.	2.6	12
180	Temperature dependence of magnetic microstructure in Fe76Mo8Cu1B15 nanocrystalline alloy. Physica Status Solidi A, 2004, 201, 3280-3284.	1.7	12

#	Article	IF	CITATIONS
181	Thermodynamic properties of chlorite and berthierine derived from calorimetric measurements. Physics and Chemistry of Minerals, 2014, 41, 603-615.	0.3	12
182	Evidence of New Fluorinated Coordination Compounds in the Composition Space Diagram of FeF ₃ /ZnF ₂ –H <i>amtetraz</i> -HF _{aq} System. Crystal Growth and Design, 2015, 15, 4248-4255.	1.4	12
183	Magnetic interactions in \hat{I}^3 -Fe2O3@SiO2 nanocomposites. Journal of Applied Physics, 2014, 116, .	1.1	11
184	[H2amtaz]+ iron fluorides: Synthesis, crystal structures, magnetic and Mössbauer studies. Journal of Fluorine Chemistry, 2015, 173, 23-28.	0.9	11
185	A Detailed Investigation of the Onion Structure of Exchanged Coupled Magnetic Fe _{3â~δ} O ₄ @CoFe ₂ O ₄ @Fe _{3â~δ} O ₄ Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 16784-16800.	4.0	11
186	Interaction of Corroding Iron with Eight Bentonites in the Alternative Buffer Materials Field Experiment (ABM2). Minerals (Basel, Switzerland), 2021, 11, 907.	0.8	11
187	M¶ssbauer study and molecular orbital calculations on some bimetallic derivatives of ferrocene and ferricinium. Hyperfine Interactions, 1993, 77, 51-66.	0.2	10
188	On the Use of Amine–Borane Complexes To Synthesize Iron Nanoparticles. Chemistry - A European Journal, 2013, 19, 6021-6026.	1.7	10
189	Tuning the iron redox state inside a microporous porphyrinic metal organic framework. Dalton Transactions, 2017, 46, 517-523.	1.6	10
190	Title is missing!. , 1999, 120/121, 297-301.		9
191	Nanogranular FexNi23â~'xB6 phase formation during devitrificationof nickel-rich Ni64Fe16Zr7B12Au1 amorphous alloy. Applied Physics Letters, 2004, 85, 1392-1394.	1.5	9
192	Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by Mössbauer spectrometry. Hyperfine Interactions, 2008, 182, 55-63.	0.2	9
193	Pseudomorphic Transformation of Layered Simple Hydroxides into Prussian Blue Analogue Nanoplatelets. European Journal of Inorganic Chemistry, 2016, 2016, 2030-2038.	1.0	9
194	A magnetisation and Mössbauer study of triazole (M _{1â~x} ²⁺ M _x ³⁺)M ³⁺ F ₅ (Htaz) <sub weberites (M = Fe, Co, Mn, Zn, Ga, V). Dalton Transactions, 2017, 46, 5352-5362.</sub 	⊃ 1.l 6â^'x <td>ub>(taz)<su< td=""></su<></td>	u b >(taz) <su< td=""></su<>
195	Exchange Bias in Chemically Reduced FeCo Alloy Nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900051.	0.8	9
196	On the first evidence of exchange-bias feature in magnetically contrasted consolidates made from CoFe2O4-CoO core-shell nanoparticles. Scientific Reports, 2019, 9, 19468.	1.6	9
197	First Mixed-Metal Fluoride Pyrochlores Obtained by Topotactic Oxidation of Ammonium Fluorides under F ₂ Gas. Crystal Growth and Design, 2021, 21, 935-945.	1.4	9
198	A robust eco-compatible microporous iron coordination polymer for CO ₂ capture. Journal of Materials Chemistry A, 2022, 10, 8535-8545.	5.2	9

#	Article	IF	CITATIONS
199	Improvement of the thermal stability of nanomaghemite by functionalization with type 5A zeolite and magnetic properties studied by in-field 57Fe Mössbauer measurements. Journal of Magnetism and Magnetic Materials, 2022, 552, 169241.	1.0	9
200	Hyperfine interactions in amorphous and nanocrystalline Fe80Ti7Cu1B12 alloy. European Physical Journal D, 1997, 47, 507-512.	0.4	8
201	Monte Carlo simulation of magnetic properties in nanocrystalline-like systems. Journal of Physics Condensed Matter, 2003, 15, 6331-6344.	0.7	8
202	Towards the reactivity of MIL-53 or FeIII(OH)0.8F0.2[O2C-C6H4-CO2] versus lithium. Studies in Surface Science and Catalysis, 2007, , 2037-2041.	1.5	8
203	Adsorption of reactive red dye (RR-120) on nanoadsorbent O-carboxymethylchitosan/l³-Fe ₂ 0 ₃ : kinetic, equilibrium and factorial design studies. RSC Advances, 2016, 6, 35058-35070.	1.7	8
204	Size and thickness effect on magnetic structures of maghemite hollow magnetic nanoparticles. Journal of Nanoparticle Research, 2016, 18, 1.	0.8	8
205	Influence of gadolinium and dysprosium substitution on magnetic properties and magnetocaloric effect of Fe78â^'RE Si4Nb5B12Cu1 amorphous alloys. Journal of Rare Earths, 2020, 38, 1317-1321.	2.5	8
206	Mössbauer Spectrometry Applied to Iron-Based Nanocrystalline Alloys I , 1999, , 243-256.		8
207	Prenormative verification and validation of a protocol for measuring magnetite–maghemite ratios in magnetic nanoparticles. Metrologia, 2022, 59, 015001.	0.6	8
208	A Comprehensive Study of Pristine and Calcined f-MWCNTs Functionalized by Nitrogen-Containing Functional Groups. Materials, 2022, 15, 977.	1.3	8
209	Recoilless Factors in Nanostructured Iron-Based Powders. Hyperfine Interactions, 2001, 136, 57-63.	0.2	7
210	Iron chelates: a challenge to chemists and Mössbauer spectroscopists. Hyperfine Interactions, 2008, 182, 77-86.	0.2	7
211	Independence of magnetic behavior for different structural states in melt-spun DyMn _{6â^'<i>x</i>} Ge _{6â^'<i>x</i>} Fe _{<i>x</i>} Al _{<i>x</i>} (0≤ Journal of Physics Condensed Matter, 2008, 20, 425212.	`> ø≤ †i>â%	bê) .
212	Mictomagnetic behavior of structurally disordered melt-spun DyMn6â^'xGe6â^'xFexAlx (0 ≤ ≤6) alloys. Journal of Applied Physics, 2011, 109, .	1.1	7
213	Method development for evaluating the redox state of Callovo-Oxfordian clayrock and synthetic montmorillonite for nuclear waste management. Applied Geochemistry, 2014, 49, 184-191.	1.4	7
214	A study of the solid state `amorphization' reaction in by diffraction and Mössbauer spectrometry. Journal of Physics Condensed Matter, 1997, 9, 1425-1433.	0.7	6
215	Variable Temperature Mössbauer Study of Some Rust Converters. Hyperfine Interactions, 2003, 148/149, 219-225.	0.2	6
216	Ti-doped A-site deficient lanthanum manganites: Local structure and properties. Journal of Magnetism and Magnetic Materials, 2006, 300, e175-e178.	1.0	6

#	Article	IF	CITATIONS
217	Structure and collaboration relationship analysis in a scientific collaboration network. Science Bulletin, 2011, 56, 3702-3706.	1.7	6
218	Correlation of cation distribution with the hyperfine and magnetic behaviour of Ni _{0.3} Zn _{0.4} Co _{0.2} Cu _{0.1} Fe ₂ O ₄ nano and their microwave absorption properties when encapsulated in multi-walled carbon nanotubes. Journal of Physics Condensed Matter, 2017, 29, 085803.	particles 0.7	6
219	Strong magnetic exchange and frustrated ferrimagnetic order in a weberite-type inorganic–organic hybrid fluoride. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180224.	1.6	6
220	Increasing the size of Fe3-δO4 Nanoparticles by Performing a Multistep Seed-Mediated Growth Approach. Crystal Growth and Design, 2020, 20, 1572-1582.	1.4	6
221	Removal of As ³⁺ , As ⁵⁺ , Sb ³⁺ , and Hg ²⁺ ions from aqueous solutions by pure and co-precipitated akaganeite nanoparticles: adsorption kinetics studies. RSC Advances, 2020, 10, 42688-42698.	1.7	6
222	Metallic glasses: Mössbauer contribution, physical properties and applications. , 1998, 111, 261-268.		5
223	Surface and bulk Mössbauer effect studies of annealed NANOPERM-type alloys. European Physical Journal D, 2001, 51, 677-683.	0.4	5
224	Study of the solid-state Âamorphization reaction in Fe50Re50by means of MÂssbauer spectrometry and diffraction measurements. Journal of Physics Condensed Matter, 2002, 14, 9713-9724.	0.7	5
225	Mechanism of amorphous state formation, crystalline structure, and hyperfine interactions in DyMn6â°'xGe6Fex (0â‰æâ‰ø) alloys. Journal of Applied Physics, 2010, 108, 073516.	1.1	5
226	Stabilization of a mixed iron vanadium based hexagonal tungsten bronze hydroxyfluoride HTB–(Fe _{0.55} V _{0.45})F _{2.67} (OH) _{0.33} as a positive electrode for lithium-ion batteries. Dalton Transactions, 2020, 49, 8186-8193.	1.6	5
227	⁵⁷ Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE–Fe–B permanent magnets*. Chinese Physics B, 2021, 30, 013302.	0.7	5
228	Highly efficient water oxidation via a bimolecular reaction mechanism on rutile structured mixed-metal oxyfluorides. Chem Catalysis, 2022, 2, 1114-1127.	2.9	5
229	A study of amorphous Fe58Ta42 alloys produced by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 226-228, 84-89.	2.6	4
230	High-yield aqueous synthesis of multi-branched iron oxide core–gold shell nanoparticles: SERS substrate for immobilization and magnetic separation of bacteria. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	4
231	Thermal stability of the nanocrystalline Fe-8P (wt.%) powder produced by ball milling. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 500-506.	0.8	4
232	Influences of As(<scp>v</scp>), Sb(<scp>iii</scp>), and Hg(<scp>ii</scp>) ions on the nucleation and growth of akaganeite. CrystEngComm, 2019, 21, 7155-7165.	1.3	4
233	On the magnetism of grain boundary phase and its contribution to the abnormal openness of recoil loops in hot-deformed magnets. Journal Physics D: Applied Physics, 2020, 53, 095002.	1.3	4

Mössbauer Spectrometry Applied to Iron-Based Nanocrystalline Alloys II. , 1999, , 257-272.

#	Article	IF	CITATIONS
235	Chapter 4. Iron-oxide Nanoparticle-based Contrast Agents. New Developments in NMR, 2017, , 318-447.	0.1	4
236	Tunable magnetocaloric effect in amorphous Gd-Fe-Co-Al-Si alloys. Journal of Materials Science, 2022, 57, 553-562.	1.7	4
237	The magnetic properties of the frustrated bidimensional antiferromagnet CsBaFe3F12. Journal of Magnetism and Magnetic Materials, 1991, 92, 381-387.	1.0	3
238	Magnetic frustration in ferric fluorides investigated by Mössbauer spectrometry. , 1999, 122, 9-19.		3
239	Bulk Magnetic Properties of the Fe0.5Mn0.1Al0.4Disordered Alloy: A Monte Carlo Study. Hyperfine Interactions, 2003, 148/149, 285-293.	0.2	3
240	Effect of annealing in an external magnetic field on the magnetic texture of Mo-containing nanocrystalline alloys. European Physical Journal D, 2006, 56, E7-E16.	0.4	3
241	IMPACTS OF SPATIAL STRUCTURE ON EPIDEMIC SPREADING. International Journal of Modern Physics C, 2012, 23, 1250082.	0.8	3
242	Thermodynamic properties of mixed-layer illite-smectite by calorimetric methods: Acquisition of the enthalpies of mixing of illite and smectite layers. Journal of Chemical Thermodynamics, 2019, 138, 78-97.	1.0	3
243	Rheological, Microstructural and Thermal Properties of Magnetic Poly(Ethylene Oxide)/Iron Oxide Nanocomposite Hydrogels Synthesized Using a One-Step Gamma-Irradiation Method. Nanomaterials, 2020, 10, 1823.	1.9	3
244	Impact of the charge transfer process on the Fe2+/Fe3+distribution at Fe3O4 magnetic surface induced by deposited Pd clusters. Surface Science, 2021, 712, 121879.	0.8	3
245	Mössbauer analysis and induction heating evaluation of grapes like FZ@MWCNT towards cancer treatment. Solid State Sciences, 2021, 122, 106756.	1.5	3
246	Deciphering the Thermal and Electrochemical Behaviors of Dual Redox-Active Iron Croconate Violet Coordination Complexes. Inorganic Chemistry, 2022, 61, 9308-9317.	1.9	3
247	Study of metal-ferrite composites: complementary use of57Fe Mössbauer spectrometry, X-ray diffraction and TG analysis. EPJ Applied Physics, 2002, 18, 33-40.	0.3	2
248	Magnetic Phases in Alloys and Nanostructured Systems. Hyperfine Interactions, 2002, 144/145, 151-160.	0.2	2
249	Polyol-Made Spinel Ferrite Nanoparticles—Local Structure and Operating Conditions: NiFe2O4 as a Case Study. Frontiers in Materials, 2021, 8, .	1.2	2
250	Colours of Gemmy Phosphates from the Gavà Neolithic Mines (Catalonia, Spain): Origin and Archaeological Significance. Minerals (Basel, Switzerland), 2022, 12, 368.	0.8	2
251	Some magnetic properties of nanoperm alloy after irradiation. European Physical Journal D, 2001, 51, 703-710.	0.4	1
252	Design and Functionalization of Magnetic Core-Shell Oxide Nanoparticles Exhibiting Exchange Bias Features. Materials Research Society Symposia Proceedings, 2011, 1359, 175.	0.1	1

#	Article	IF	CITATIONS
253	Coupled structural and magnetic properties of ferric fluoride nanostructures: Part II, a Monte Carlo–Heisenberg study. Journal of Magnetism and Magnetic Materials, 2012, 324, 3646-3651.	1.0	1
254	Diffusion on spatial network. Journal of Physics: Conference Series, 2015, 604, 012008.	0.3	1
255	Crystal structure study of manganese and titanium substituted BaLaFe 2 O 6-δ. Journal of Solid State Chemistry, 2017, 251, 186-193.	1.4	1
256	Exchange-bias features in nanoceramics prepared by spark plasma sintering of exchange-biased nanopowders. Journal of Materials Chemistry C, 2020, 8, 5941-5949.	2.7	1
257	Magnetic Phases in Alloys and Nanostructured Systems. , 2003, , 151-160.		1
258	Synthesis of Magnetic Wires from Polyol-Derived Fe-Glycolate Wires. Nanomaterials, 2020, 10, 318.	1.9	1
259	Solid state amorphisation of a Fe-Co-Nb-B powder mixture by mechanical alloying. Annales De Chimie: Science Des Materiaux, 2010, 35, 169-176.	0.2	1
260	High-Pressure Synthesis of Trigonal LiFe ₂ F ₆ : New Iron Fluoride with Li ⁺ Tunnels as a Potential Cathode for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 8248-8255.	1.5	1
261	Cu-mediated grain boundary engineering in Nd–Ce–Fe–B nanostructured permanent magnets. Materials Today Nano, 2022, 19, 100230.	2.3	1
262	Mössbauer and X-Ray Characterization of Fe0.2Mn0.4Al0.4Mechanically Alloyed Powders. Hyperfine Interactions, 2003, 148/149, 317-324.	0.2	0
263	Magnetic properties of Fe66Cr12Al22 crystalline ribbon. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 528-531.	1.0	0
264	Tetrahedrally Coordinated Iron(II) Incorporation in the Super-Sodalite Aluminophosphate Fe3Al6 (PO4)12×4tren×17H2O (MIL-74) ChemInform, 2004, 35, no.	0.1	0
265	Structural and Magnetic Properties of Nanostructured Oxides Investigated by57Fe Moessbauer Spectrometry. ChemInform, 2004, 35, no.	0.1	0
266	Magnetic Properties of Nanostructured Materials. , 2005, , 253-266.		0
267	Magnetism influenced by structural disorder in melt-spun DyMn6 â^' x Ge6 â^' x Fe x Al x (x = 2.5 Hyperfine Interactions, 2013, 219, 69-74.	5, ₀ 3). 0.2	0
268	From magneto-elastic impedance model to accurate magneto-mechanical coefficient measurements. Review of Scientific Instruments, 2021, 92, 035004.	0.6	0
269	Iron minerals formed by dissimilatory iron-and sulfur reducing bacteria studied by M¶ssbauer spectrometry. , 2008, , 55-63.		0
270	Effect of the milling conditions on the amorphisation of Fe77Cr4P8C11. Annales De Chimie: Science Des Materiaux, 2010, 35, 177-186.	0.2	0

#	Article	IF	CITATIONS
271	Magnetism influenced by structural disorder in melt-spun DyMn6 â^' x Ge6 â^' x Fe x Al x (x = 2 387-392.	2.5, 3). ,	, 2012, ,