Mounir Mensi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11054465/publications.pdf Version: 2024-02-01

MOUND MENSI

#	Article	IF	CITATIONS
1	Highly Planar Benzodipyrroleâ€Based Hole Transporting Materials with Passivation Effect for Efficient Perovskite Solar Cells. Solar Rrl, 2022, 6, 2100667.	3.1	11
2	Structure Evolution of Graphitic Surface upon Oxidation: Insights by Scanning Tunneling Microscopy. Jacs Au, 2022, 2, 723-730.	3.6	14
3	3D <i>vs.</i> turbostratic: controlling metal–organic framework dimensionality <i>via N</i> -heterocyclic carbene chemistry. Chemical Science, 2022, 13, 6418-6428.	3.7	2
4	Defect engineered nanostructured LaFeO ₃ photoanodes for improved activity in solar water oxidation. Journal of Materials Chemistry A, 2021, 9, 2888-2898.	5.2	13
5	Phosphine Oxide Derivative as a Passivating Agent to Enhance the Performance of Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 1259-1268.	2.5	11
6	Spectroelectrochemical and Chemical Evidence of Surface Passivation at Zinc Ferrite (ZnFe ₂ O ₄) Photoanodes for Solar Water Oxidation. Advanced Functional Materials, 2021, 31, 2010081.	7.8	26
7	Millisecond lattice gasification for high-density CO ₂ - and O ₂ -sieving nanopores in single-layer graphene. Science Advances, 2021, 7, .	4.7	47
8	Benzodithiopheneâ€Based Spacers for Layered and Quasi‣ayered Lead Halide Perovskite Solar Cells. ChemSusChem, 2021, 14, 3001-3009.	3.6	8
9	Multipulsed Millisecond Ozone Gasification for Predictable Tuning of Nucleation and Nucleation-Decoupled Nanopore Expansion in Graphene for Carbon Capture. ACS Nano, 2021, 15, 13230-13239.	7.3	16
10	Identifying Reactive Sites and Surface Traps in Chalcopyrite Photocathodes. Angewandte Chemie - International Edition, 2021, 60, 23651-23655.	7.2	11
11	ldentifizierung von reaktiven Zentren und OberflÜhenfallen in Chalkopyritâ€Photokathoden. Angewandte Chemie, 2021, 133, 23843-23847.	1.6	2
12	Methylammonium Triiodide for Defect Engineering of High-Efficiency Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 3650-3660.	8.8	28
13	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. Energy and Environmental Science, 2021, 14, 5552-5562.	15.6	69
14	Mechanistic Insights into the Role of the Bis(trifluoromethanesulfonyl)imide Ion in Coevaporated p–i–n Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, , .	4.0	2
15	Synergistic CO ₂ â€Sieving from Polymer with Intrinsic Microporosity Masking Nanoporous Singleâ€Layer Graphene. Advanced Functional Materials, 2020, 30, 2003979.	7.8	43
16	Metal–ligand bond strength determines the fate of organic ligands on the catalyst surface during the electrochemical CO ₂ reduction reaction. Chemical Science, 2020, 11, 9296-9302.	3.7	35
17	Oxidative Print Light Synthesis Thin Film Deposition of Prussian Blue. ACS Applied Electronic Materials, 2020, 2, 927-935.	2.0	37
18	Sustainable Hydrogenation of Nitroarenes to Anilines with Highly Active <i>inâ€situ</i> Generated Copper Nanoparticles. ChemCatChem, 2020, 12, 2833-2839.	1.8	14

MOUNIR MENSI

#	Article	IF	CITATIONS
19	Co-evaporation as an optimal technique towards compact methylammonium bismuth iodide layers. Scientific Reports, 2020, 10, 10640.	1.6	11
20	Large-scale synthesis of crystalline g-C ₃ N ₄ nanosheets and high-temperature H ₂ sieving from assembled films. Science Advances, 2020, 6, eaay9851.	4.7	105
21	Lead Sequestration from Perovskite Solar Cells Using a Metal–Organic Framework Polymer Composite. Energy Technology, 2020, 8, 2000239.	1.8	35
22	Print-Light-Synthesis of Ni and NiFe-Nanoscale Catalysts for Oxygen Evolution. ACS Applied Energy Materials, 2019, 2, 6322-6331.	2.5	15
23	Nanocrystal/Metal–Organic Framework Hybrids as Electrocatalytic Platforms for CO ₂ Conversion. Angewandte Chemie - International Edition, 2019, 58, 12632-12639.	7.2	112
24	Nanocrystal/Metal–Organic Framework Hybrids as Electrocatalytic Platforms for CO 2 Conversion. Angewandte Chemie, 2019, 131, 12762-12769.	1.6	23
25	High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target. Energy and Environmental Science, 2019, 12, 3305-3312.	15.6	100
26	Synthesis of Cu/CeO _{2-x} Nanocrystalline Heterodimers with Interfacial Active Sites To Promote CO ₂ Electroreduction. ACS Catalysis, 2019, 9, 5035-5046.	5.5	124
27	Retarding Thermal Degradation in Hybrid Perovskites by Ionic Liquid Additives. Advanced Functional Materials, 2019, 29, 1902021.	7.8	76
28	Discovery of a self-healing catalyst for the hydrolytic dehydrogenation of ammonia borane. Journal of Materials Chemistry A, 2019, 7, 23830-23837.	5.2	14
29	Exploring Energy Transfer in a Metal/Perovskite Nanocrystal Antenna to Drive Photocatalysis. Journal of Physical Chemistry Letters, 2019, 10, 7797-7803.	2.1	17
30	Molecular tunability of surface-functionalized metal nanocrystals for selective electrochemical CO ₂ reduction. Chemical Science, 2019, 10, 10356-10365.	3.7	54
31	Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO ₂ Reduction Revealed by Ag–Cu Nanodimers. Journal of the American Chemical Society, 2019, 141, 2490-2499.	6.6	382
32	Optical absorption edge broadening in thick InGaN layers: Random alloy atomic disorder and growth mode induced fluctuations. Applied Physics Letters, 2018, 112, .	1.5	31
33	Impact of surface morphology on the properties of light emission in InGaN epilayers. Applied Physics Express, 2018, 11, 051004.	1.1	9
34	Direct Measurement of Nanoscale Lateral Carrier Diffusion: Toward Scanning Diffusion Microscopy. ACS Photonics, 2018, 5, 528-534.	3.2	16
35	Multimode Scanning Near-Field Photoluminescence Spectroscopy of InGaN Quantum Wells. , 2018, , .		0
36	Mixed-Phase MOF-Derived Titanium Dioxide for Photocatalytic Hydrogen Evolution: The Impact of the Templated Morphology. ACS Applied Energy Materials, 2018, 1, 6541-6548.	2.5	42

#	Article	IF	CITATIONS
37	Lasing from Organic Dye Molecules Embedded in Transparent Wood. Advanced Optical Materials, 2017, 5, 1700057.	3.6	87
38	Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics. , 0, , .		0