
Claire E Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11053561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distinct Role of Macrophages in Different Tumor Microenvironments. Cancer Research, 2006, 66, 605-612.	0.9	1,922
2	The role of tumourâ€associated macrophages in tumour progression: implications for new anticancer therapies. Journal of Pathology, 2002, 196, 254-265.	4.5	1,757
3	The role of myeloid cells in the promotion of tumour angiogenesis. Nature Reviews Cancer, 2008, 8, 618-631.	28.4	1,404
4	Macrophage Regulation of Tumor Responses to Anticancer Therapies. Cancer Cell, 2013, 23, 277-286.	16.8	893
5	Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood, 2004, 104, 2224-2234.	1.4	772
6	White Matter Lesions in an Unselected Cohort of the Elderly. Stroke, 2006, 37, 1391-1398.	2.0	495
7	Hypoxia Regulates Macrophage Functions in Inflammation. Journal of Immunology, 2005, 175, 6257-6263.	0.8	404
8	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	1.8	395
9	Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nature Cell Biology, 2019, 21, 190-202.	10.3	384
10	Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. Cancer Research, 2015, 75, 3479-3491.	0.9	375
11	Plasticity of Macrophage Function during Tumor Progression: Regulation by Distinct Molecular Mechanisms. Journal of Immunology, 2008, 180, 2011-2017.	0.8	372
12	Diverse Functions of Macrophages in Different Tumor Microenvironments. Cancer Research, 2018, 78, 5492-5503.	0.9	313
13	Angiopoietin-2 Regulates Gene Expression in TIE2-Expressing Monocytes and Augments Their Inherent Proangiogenic Functions. Cancer Research, 2010, 70, 5270-5280.	0.9	299
14	Expression of Tie-2 by Human Monocytes and Their Responses to Angiopoietin-2. Journal of Immunology, 2007, 178, 7405-7411.	0.8	283
15	Current methods for assaying angiogenesis <i>in vitro</i> and <i>in vivo</i> . International Journal of Experimental Pathology, 2004, 85, 233-248.	1.3	278
16	Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood, 2009, 114, 844-859.	1.4	271
17	Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. Journal of Pathology, 2000, 190, 430-436.	4.5	268
18	Neutrophils: key mediators of tumour angiogenesis. International Journal of Experimental Pathology, 2009, 90, 222-231.	1.3	257

CLAIRE E LEWIS

#	Article	IF	CITATIONS
19	Hypoxia-Induced Gene Expression in Human Macrophages. American Journal of Pathology, 2003, 163, 1233-1243.	3.8	255
20	Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends in Immunology, 2007, 28, 519-524.	6.8	255
21	Tie2-Expressing Monocytes and Tumor Angiogenesis: Regulation by Hypoxia and Angiopoietin-2. Cancer Research, 2007, 67, 8429-8432.	0.9	240
22	Tumor-associated macrophages: Effectors of angiogenesis and tumor progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2009, 1796, 11-18.	7.4	212
23	Regulation of macrophage function in tumors: the multifaceted role of NF-Î ^o B. Blood, 2009, 113, 3139-3146.	1.4	208
24	TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice. Journal of Clinical Investigation, 2011, 121, 1969-1973.	8.2	204
25	Expression of hypoxia-inducible factor 1? by macrophages in the rheumatoid synovium: Implications for targeting of therapeutic genes to the inflamed joint. Arthritis and Rheumatism, 2001, 44, 1540-1544.	6.7	197
26	The Multifaceted Role of Perivascular Macrophages in Tumors. Cancer Cell, 2016, 30, 18-25.	16.8	194
27	Angiopoietin 2 Stimulates TIE2-Expressing Monocytes To Suppress T Cell Activation and To Promote Regulatory T Cell Expansion. Journal of Immunology, 2011, 186, 4183-4190.	0.8	185
28	Plasticity in Tumor-Promoting Inflammation: Impairment of Macrophage Recruitment Evokes a Compensatory Neutrophil Response. Neoplasia, 2008, 10, 329-IN2.	5.3	183
29	Macrophage migration and gene expression in response to tumor hypoxia. International Journal of Cancer, 2005, 117, 701-708.	5.1	176
30	Expression of HIF-1? by human macrophages: implications for the use of macrophages in hypoxia-regulated cancer gene therapy. Journal of Pathology, 2002, 196, 204-212.	4.5	168
31	Anoxic induction of ATF-4 through HIF-1–independent pathways of protein stabilization in human cancer cells. Blood, 2004, 103, 1876-1882.	1.4	162
32	Perivascular macrophages in health and disease. Nature Reviews Immunology, 2018, 18, 689-702.	22.7	146
33	Elusive Identities and Overlapping Phenotypes of Proangiogenic Myeloid Cells in Tumors. American Journal of Pathology, 2010, 176, 1564-1576.	3.8	137
34	A Multiphase Model Describing Vascular Tumour Growth. Bulletin of Mathematical Biology, 2003, 65, 609-640.	1.9	135
35	Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. Journal of Theoretical Biology, 2004, 226, 377-391.	1.7	132
36	NF-κB as a central regulator of macrophage function in tumors. Journal of Leukocyte Biology, 2010, 88, 877-884.	3.3	123

CLAIRE E LEWIS

#	Article	IF	CITATIONS
37	Macrophages limit chemotherapy. Nature, 2011, 472, 303-304.	27.8	112
38	Use of Macrophages to Target Therapeutic Adenovirus to Human Prostate Tumors. Cancer Research, 2011, 71, 1805-1815.	0.9	111
39	The role of fibrinogen and related fragments in tumour angiogenesis and metastasis. Expert Opinion on Biological Therapy, 2003, 3, 1105-1120.	3.1	103
40	Expression of Vascular Endothelial Growth Factor and Its Receptors in the Central Nervous System in Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2006, 65, 26-36.	1.7	87
41	Mathematical Modeling Predicts Synergistic Antitumor Effects of Combining a Macrophage-Based, Hypoxia-Targeted Gene Therapy with Chemotherapy. Cancer Research, 2011, 71, 2826-2837.	0.9	84
42	Inhibition of neutrophil infiltration into A549 lung tumors <i>in vitro</i> and <i>in vivo</i> using a CXCR2â€specific antagonist is associated with reduced tumor growth. International Journal of Cancer, 2011, 129, 847-858.	5.1	81
43	Microarray RNA Expression Analysis of Cerebral White Matter Lesions Reveals Changes in Multiple Functional Pathways. Stroke, 2009, 40, 369-375.	2.0	80
44	Hemostatic Regulators of Tumor Angiogenesis: A Source of Antiangiogenic Agents for Cancer Treatment?. Journal of the National Cancer Institute, 2003, 95, 1660-1673.	6.3	79
45	Macrophage Delivery of an Oncolytic Virus Abolishes Tumor Regrowth and Metastasis after Chemotherapy or Irradiation. Cancer Research, 2013, 73, 490-495.	0.9	76
46	Use of bacteria in anti-cancer therapies. BioEssays, 2006, 28, 84-94.	2.5	72
47	Validation of anti-vascular endothelial growth factor (anti-VEGF) antibodies for immunohistochemical localization of VEGF in tissue sections: expression of VEGF in the human endometrium. , 1998, 185, 402-408.		66
48	Effects of hypoxia on transcription factor expression in human monocytes and macrophages. Immunobiology, 2008, 213, 899-908.	1.9	66
49	Alphastatin, a 24–amino acid fragment of human fibrinogen, is a potent new inhibitor of activated endothelial cells in vitro and in vivo. Blood, 2004, 103, 601-606.	1.4	60
50	Inflammation and breast cancer. Microenvironmental factors regulating macrophage function in breast tumours: hypoxia and angiopoietin-2. Breast Cancer Research, 2007, 9, 209.	5.0	56
51	Macrophage-Based Anti-Cancer Therapy: Modelling Different Modes of Tumour Targeting. Bulletin of Mathematical Biology, 2007, 69, 1747-1776.	1.9	35
52	Non-canonical HIF-1 stabilization contributes to intestinal tumorigenesis. Oncogene, 2019, 38, 5670-5685.	5.9	26
53	Angiogenesis inhibitors found within the haemostasis pathway. Journal of Cellular and Molecular Medicine, 2005, 9, 286-302.	3.6	25
54	Multiple Effects of Angiopoietin-2 Blockade on Tumors. Cancer Cell, 2011, 19, 431-433.	16.8	21

CLAIRE E LEWIS

#	Article	IF	CITATIONS
55	Macrophages Mediate the Antitumor Effects of the Oncolytic Virus HSV1716 in Mammary Tumors. Molecular Cancer Therapeutics, 2021, 20, 589-601.	4.1	16
56	Screening of the regulatory and coding regions of vascular endothelial growth factor in amyotrophic lateral sclerosis. Neurogenetics, 2005, 6, 101-104.	1.4	15
57	Targeting circulating monocytes with CCL2-loaded liposomes armed with an oncolytic adenovirus. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102506.	3.3	11
58	Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. Journal of Pathology, 2000, 190, 430-436.	4.5	3
59	Macrophage Regulation of the Development of Castration-Resistant Prostate Cancer. Cancer Research, 2021, 81, 5399-5400.	0.9	3
60	Role of Tumour-Associated Macrophages in the Regulation of Angiogenesis. , 2011, , 17-29.		2
61	Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. , 2000, 190, 430.		1
62	Alphastatin: a Pluripotent Inhibitor of Activated Endothelial Cells. , 2006, , 205-220.		0
63	Abstract 2720: Perivascular accumulation of immunosuppressive cells in the stroma of human triple negative breast carcinomas: implications for immunotherapy. , 2021, , .		Ο
64	Abstract 2797: Changes in the phenotype of macrophages and CD8+ T Cells in the perivascular niche of prostate tumours following androgen deprivation. , 2021, , .		0