Ning Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11053249/publications.pdf

Version: 2024-02-01

430754 677027 1,778 22 18 22 h-index citations g-index papers 22 22 22 1693 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanism of Action of the Tungsten Dopant in LiNiO ₂ Positive Electrode Materials. Advanced Energy Materials, 2022, 12, .	10.2	49
2	Synthesis of Co-Free Ni-Rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part I. Two-Step Lithiation Method for Al- or Mg-Doped LiNiO ₂ . Journal of the Electrochemical Society, 2021, 168, 040531.	1.3	33
3	Synthesis of Co-Free Ni-Rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part II. One-Step Lithiation Method of Mg-Doped LiNiO ₂ . Journal of the Electrochemical Society, 2021, 168, 050506.	1.3	16
4	Factors that Affect Capacity in the Low Voltage Kinetic Hindrance Region of Ni-Rich Positive Electrode Materials and Diffusion Measurements from a Reinvented Approach. Journal of the Electrochemical Society, 2021, 168, 070503.	1.3	29
5	Boosting the electrochemical performance of LiNi0.6Mn0.2Co0.2O2 through a trace amount of Mg-B co-doping. Journal of Materials Science and Technology, 2021, 89, 167-178.	5.6	11
6	Effects of Fluorine Doping on Nickel-Rich Positive Electrode Materials for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 080518.	1.3	18
7	Study of the Reactions between Ni-Rich Positive Electrode Materials and Aqueous Solutions and their Relation to the Failure of Li-Ion Cells. Journal of the Electrochemical Society, 2020, 167, 130521.	1.3	64
8	An Unavoidable Challenge for Ni-Rich Positive Electrode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 7574-7583.	3.2	205
9	Impact of Dopants (Al, Mg, Mn, Co) on the Reactivity of Li _x NiO ₂ Âwith the Electrolyte of Li-lon Batteries. Journal of the Electrochemical Society, 2019, 166, A2826-A2833.	1.3	46
10	A Wide Range of Testing Results on an Excellent Lithium-Ion Cell Chemistry to be used as Benchmarks for New Battery Technologies. Journal of the Electrochemical Society, 2019, 166, A3031-A3044.	1.3	286
11	Synthesis of Single Crystal LiNi _{0.88} Co _{0.09} Al _{0.03} O ₂ Âwith a Two-Step Lithiation Method. Journal of the Electrochemical Society, 2019, 166, A1956-A1963.	1.3	117
12	Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?. Journal of the Electrochemical Society, 2019, 166, A429-A439.	1.3	259
13	Investigating the Effects of Magnesium Doping in Various Ni-Rich Positive Electrode Materials for Lithium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A4025-A4033.	1.3	54
14	Cobalt-Free Nickel-Rich Positive Electrode Materials with a Core–Shell Structure. Chemistry of Materials, 2019, 31, 10150-10160.	3.2	69
15	Preparation of Poly(o-ethylaniline)-SiC/Zinc Bilayer Coatings and Study of Its Corrosion Resistance Properties. Journal of the Electrochemical Society, 2018, 165, G56-G65.	1.3	7
16	Impact of the Synthesis Conditions on the Performance of LiNi _x Co _y Al _z O ₂ with High Ni and Low Co Content. Journal of the Electrochemical Society, 2018, 165, A3544-A3557.	1.3	55
17	Structural, Electrochemical, and Thermal Properties of Nickel-Rich LiNi _{<i>x</i>} Mn _{<i>y</i>} Co _{<i>z</i>} O ₂ Materials. Chemistry of Materials, 2018, 30, 8852-8860.	3.2	80
18	Updating the Structure and Electrochemistry of Li _x NiO ₂ for 0 ≤ ≤. Journal of the Electrochemical Society, 2018, 165, A2985-A2993.	1.3	194

#	ARTICLE	IF	CITATIONS
19	Investigating the Removal of Layered Double Hydroxides in [Ni _{0.80} Co _{0.15}] _{0.95-x} Al _{0.05+x} (OH) ₂ (x = 0,) To the contraction of the co	jETiQxq1	1 0. ⊼8 4314 rgB
20	Dependence of Cell Failure on Cut-Off Voltage Ranges and Observation of Kinetic Hindrance in LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ . Journal of the Electrochemical Society, 2018, 165, A2682-A2695.	1.3	99
21	Synthesis and characterization of a poly(o-anisidine)–SiC composite and its application for corrosion protection of steel. RSC Advances, 2017, 7, 11732-11742.	1.7	49
22	Preparation of poly(o-ethoxyaniline)-nano SiC composite and evaluation of its corrosion resistance properties. Journal of Alloys and Compounds, 2017, 717, 98-107.	2.8	20