Haoke Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1105250/publications.pdf

Version: 2024-02-01

				44069	4	48315
108		8,562		48		88
papers		citations		h-index		g-index
138		138		138		5603
all docs		docs citations		times ranked		citing authors
	papers 138	papers 138	papers citations 138 138	108 8,562 citations 138 138	papers citations h-index 138 138 138	108 8,562 48 papers citations h-index 138 138 138

#	Article	IF	CITATIONS
1	Aggregationâ€Induced Emission: New Vistas at the Aggregate Level. Angewandte Chemie - International Edition, 2020, 59, 9888-9907.	13.8	821
2	Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 2019, 141, 5359-5368.	13.7	465
3	Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 2020, 32, 275-292.	14.2	407
4	Highly Efficient Circularly Polarized Electroluminescence from Aggregationâ€Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800051.	14.9	302
5	Design of AlEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nature Communications, 2020, 11, 1255.	12.8	283
6	Aggregate Science: From Structures to Properties. Advanced Materials, 2020, 32, e2001457.	21.0	254
7	Why Do Simple Molecules with "Isolated―Phenyl Rings Emit Visible Light?. Journal of the American Chemical Society, 2017, 139, 16264-16272.	13.7	201
8	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie - International Edition, 2018, 57, 15189-15193.	13.8	198
9	Stimuliâ€Responsive AlEgens. Advanced Materials, 2021, 33, e2008071.	21.0	178
10	Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. Journal of the American Chemical Society, 2020, 142, 15146-15156.	13.7	177
11	Constitutional Isomerization Enables Bright NIRâ€II AIEgen for Brainâ€Inflammation Imaging. Advanced Functional Materials, 2020, 30, 1908125.	14.9	175
12	Real-Time Monitoring of Hierarchical Self-Assembly and Induction of Circularly Polarized Luminescence from Achiral Luminogens. ACS Nano, 2019, 13, 3618-3628.	14.6	157
13	Functionalized Acrylonitriles with Aggregation-Induced Emission: Structure Tuning by Simple Reaction-Condition Variation, Efficient Red Emission, and Two-Photon Bioimaging. Journal of the American Chemical Society, 2019, 141, 15111-15120.	13.7	155
14	Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polymer Chemistry, 2017, 8, 1722-1727.	3.9	152
15	Deciphering the working mechanism of aggregation-induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chemical Science, 2018, 9, 4662-4670.	7.4	150
16	In Situ Monitoring of RAFT Polymerization by Tetraphenylethyleneâ€Containing Agents with Aggregationâ€Induced Emission Characteristics. Angewandte Chemie - International Edition, 2018, 57, 6274-6278.	13.8	145
17	ACQâ€ŧoâ€AlE Transformation: Tuning Molecular Packing by Regioisomerization for Twoâ€Photon NIR Bioimaging. Angewandte Chemie - International Edition, 2020, 59, 12822-12826.	13.8	131
18	Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AlEgens. Chemical Science, 2020, 11, 2494-2503.	7.4	131

#	Article	IF	CITATIONS
19	Restriction of Access to the Dark State: A New Mechanistic Model for Heteroatom ontaining AIE Systems. Angewandte Chemie - International Edition, 2019, 58, 14911-14914.	13.8	130
20	Facile Multicomponent Polymerizations toward Unconventional Luminescent Polymers with Readily Openable Small Heterocycles. Journal of the American Chemical Society, 2018, 140, 5588-5598.	13.7	116
21	Through-Space Interactions in Clusteroluminescence. Jacs Au, 2021, 1, 1805-1814.	7.9	116
22	New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angewandte Chemie - International Edition, 2020, 59, 9293-9298.	13.8	105
23	Polymerization-induced emission. Materials Horizons, 2020, 7, 987-998.	12.2	104
24	Boosting Fluorescence-Photoacoustic-Raman Properties in One Fluorophore for Precise Cancer Surgery. CheM, 2019, 5, 2657-2677.	11.7	100
25	How to Manipulate Through-Space Conjugation and Clusteroluminescence of Simple AlEgens with Isolated Phenyl Rings. Journal of the American Chemical Society, 2021, 143, 9565-9574.	13.7	97
26	Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angewandte Chemie, 2020, 132, 9972-9993.	2.0	96
27	Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. Angewandte Chemie - International Edition, 2019, 58, 4536-4540.	13.8	87
28	Metal-Free Catalysts for the Polymerization of Alkynyl-Based Monomers. Catalysts, 2021, 11, 1.	3.5	86
29	Altering Chain Flexibility of Aliphatic Polyesters for Yellowâ€Green Clusteroluminescence in 38 % Quantum Yield. Angewandte Chemie - International Edition, 2022, 61, .	13.8	83
30	Restriction of Intramolecular Motion(RIM): Investigating AIE Mechanism from Experimental and Theoretical Studies. Chemical Research in Chinese Universities, 2021, 37, 1-15.	2.6	81
31	Incorporation of Planar Blocks into Twisted Skeletons: Boosting Brightness of Fluorophores for Bioimaging beyond 1500 Nanometer. ACS Nano, 2020, 14, 14228-14239.	14.6	78
32	Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. ACS Nano, 2019, 13, 839-846.	14.6	77
33	A "simple―donor–acceptor AlEgen with multi-stimuli responsive behavior. Materials Horizons, 2020, 7, 135-142.	12.2	77
34	Axial chiral aggregation-induced emission luminogens with aggregation-annihilated circular dichroism effect. Journal of Materials Chemistry C, 2015, 3, 5162-5166.	5.5	76
35	Through-Space Interaction of Tetraphenylethylene: What, Where, and How. Journal of the American Chemical Society, 2022, 144, 7901-7910.	13.7	72
36	Molecular Motion in the Solid State. , 2019, 1, 425-431.		71

#	Article	IF	CITATIONS
37	"Living―luminogens: light driven ACQ-to-AIE transformation accompanied with solid-state actuation. Materials Horizons, 2020, 7, 1566-1572.	12.2	71
38	In situ monitoring of molecular aggregation using circular dichroism. Nature Communications, 2018, 9, 4961.	12.8	70
39	Dual-Color Emissive AlEgen for Specific and Label-Free Double-Stranded DNA Recognition and Single-Nucleotide Polymorphisms Detection. Journal of the American Chemical Society, 2019, 141, 20097-20106.	13.7	70
40	Structure, Assembly, and Function of (Latent)-Chiral AlEgens. , 2019, 1, 192-202.		70
41	Conjugates of tetraphenylethene and diketopyrrolopyrrole: tuning the emission properties with phenyl bridges. Chemical Communications, 2014, 50, 8747-8750.	4.1	69
42	<scp>Aggregationâ€Induced</scp> Emission: A Rising Star in Chemistry and Materials Science. Chinese Journal of Chemistry, 2021, 39, 677-689.	4.9	69
43	Sparks fly when AIE meets with polymers. Materials Chemistry Frontiers, 2019, 3, 2207-2220.	5.9	68
44	Aliphatic Polyesters with White-Light Clusteroluminescence. Journal of the American Chemical Society, 2022, 144, 15286-15294.	13.7	67
45	Drawing a clear mechanistic picture for the aggregation-induced emission process. Materials Chemistry Frontiers, 2019, 3, 1143-1150.	5.9	64
46	Sulfur Conversion to Multifunctional Poly(<i>O</i> -thiocarbamate)s through Multicomponent Polymerizations of Sulfur, Diols, and Diisocyanides. Journal of the American Chemical Society, 2021, 143, 3944-3950.	13.7	63
47	Facilitation of molecular motion to develop turn-on photoacoustic bioprobe for detecting nitric oxide in encephalitis. Nature Communications, 2021, 12, 960.	12.8	62
48	Chemiluminescence Resonance Energy Transfer Efficiency and Donor–Acceptor Distance: from Qualitative to Quantitative. Angewandte Chemie - International Edition, 2021, 60, 13029-13034.	13.8	58
49	Multi-Functional Hyperbranched Poly(vinylene sulfide)s Constructed via Spontaneous Thiol–Yne Click Polymerization. Macromolecules, 2015, 48, 7782-7791.	4.8	57
50	Visualization and Manipulation of Solid-State Molecular Motions in Cocrystallization Processes. Journal of the American Chemical Society, 2021, 143, 9468-9477.	13.7	52
51	Time-dependent solid-state molecular motion and colour tuning of host-guest systems by organic solvents. Nature Communications, 2020, 11, 77.	12.8	51
52	Visualization and Manipulation of Molecular Motion in the Solid State through Photoinduced Clusteroluminescence. Journal of Physical Chemistry Letters, 2019, 10, 7077-7085.	4.6	50
53	Secondary through-space interactions facilitated single-molecule white-light emission from clusteroluminogens. Nature Communications, 2022, 13, .	12.8	50
54	Clusteroluminescence from Cluster Excitons in Small Heterocyclics Free of Aromatic Rings. Advanced Science, 2021, 8, 2004299.	11.2	49

#	Article	IF	CITATIONS
55	Influence of the number and substitution position of phenyl groups on the aggregation-enhanced emission of benzene-cored luminogens. Chemical Communications, 2015, 51, 4830-4833.	4.1	47
56	Aggregation-Induced Generation of Reactive Oxygen Species: Mechanism and Photosensitizer Construction. Molecules, 2021, 26, 268.	3.8	47
57	Polymorph selectivity of an AIE luminogen under nano-confinement to visualize polymer microstructures. Chemical Science, 2020, 11, 997-1005.	7.4	46
58	Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS Nano, 2019, 13, 11863-11873.	14.6	45
59	A synergy between the push–pull electronic effect and twisted conformation for high-contrast mechanochromic AlEgens. Materials Horizons, 2021, 8, 630-638.	12.2	42
60	Pillarareneâ€Induced Intramolecular Throughâ€Space Charge Transfer and Singleâ€Molecule Whiteâ€Light Emission. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
61	Facile emission color tuning and circularly polarized light generation of single luminogen in engineering robust forms. Materials Horizons, 2019, 6, 405-411.	12.2	41
62	An easily synthesized AIE luminogen for lipid droplet-specific super-resolution imaging and two-photon imaging. Materials Chemistry Frontiers, 2021, 5, 1872-1883.	5.9	41
63	Supramolecular Polymerization with Dynamic Self-Sorting Sequence Control. Macromolecules, 2019, 52, 8814-8825.	4.8	40
64	Deep-Red Fluorescent Organic Nanoparticles with High Brightness and Photostability for Super-Resolution in Vitro and in Vivo Imaging Using STED Nanoscopy. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6814-6826.	8.0	40
65	Unveiling the Different Emission Behavior of Polytriazoles Constructed from Pyrazine-Based AIE Monomers by Click Polymerization. ACS Applied Materials & Samp; Interfaces, 2018, 10, 12181-12188.	8.0	38
66	Highly Selective and Productive Synthesis of a Carbon Dioxide-Based Copolymer upon Zwitterionic Growth. Macromolecules, 2021, 54, 2178-2186.	4.8	38
67	"Seeing―and Controlling Photoisomerization by (<i>Z</i>)-/(<i>E</i>)-Isomers with Aggregation-Induced Emission Characteristics. ACS Nano, 2019, 13, 12120-12126.	14.6	36
68	Solid-state intramolecular motions in continuous fibers driven by ambient humidity for fluorescent sensors. National Science Review, 2021, 8, nwaa135.	9.5	36
69	Theranostic hyaluronic acid prodrug micelles with aggregation-induced emission characteristics for targeted drug delivery. Science China Chemistry, 2016, 59, 1609-1615.	8.2	35
70	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie, 2018, 130, 15409-15413.	2.0	35
71	Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2021. Chinese Chemical Letters, 2023, 34, 107592.	9.0	35
72	Restriction of Access to the Dark State: A New Mechanistic Model for Heteroatomâ€Containing AIE Systems. Angewandte Chemie, 2019, 131, 15053-15056.	2.0	34

#	Article	IF	CITATIONS
73	Catalyst-Free Multicomponent Tandem Polymerizations of Alkyne and Amines toward Nontraditional Intrinsic Luminescent Poly(aminomaleimide)s. Macromolecules, 2020, 53, 3756-3764.	4.8	34
74	Circularly Polarized Luminescence from Chiral Conjugated Poly(carbazole- <i>ran</i> -acridine)s with Aggregation-Induced Emission and Delayed Fluorescence. ACS Applied Polymer Materials, 2019, 1, 221-229.	4.4	33
75	Enantiomeric Switching of the Circularly Polarized Luminescence Processes in a Hierarchical Biomimetic System by Film Tilting. ACS Nano, 2021, 15, 1397-1406.	14.6	31
76	Recent Advances in Clusteroluminescence. Topics in Current Chemistry, 2021, 379, 14.	5.8	31
77	Multiple Stimuli Responses of Stereo-Isomers of AIE-Active Ethynylene-Bridged and Pyridyl-Modified Tetraphenylethene. Journal of Physical Chemistry B, 2018, 122, 2165-2176.	2.6	30
78	The role of amide (n,Ï€â^—) transitions in polypeptide clusteroluminescence. Cell Reports Physical Science, 2022, 3, 100716.	5.6	29
79	Morphogenesis and Optoelectronic Properties of Supramolecular Assemblies of Chiral Perylene Diimides in a Binary Solvent System. Scientific Reports, 2017, 7, 5508.	3.3	28
80	Tetraphenylethylene-based color-tunable AIE-ESIPT chromophores. Dyes and Pigments, 2020, 175, 108175.	3.7	28
81	Aggregation-Induced Emission (AIE) in Super-resolution Imaging: Cationic AIE Luminogens (AIEgens) for Tunable Organelle-Specific Imaging and Dynamic Tracking in Nanometer Scale. ACS Nano, 2022, 16, 5932-5942.	14.6	26
82	ACQâ€toâ€AIE Transformation: Tuning Molecular Packing by Regioisomerization for Twoâ€Photon NIR Bioimaging. Angewandte Chemie, 2020, 132, 12922-12926.	2.0	25
83	Oxygen and sulfur-based pure n-electron dendrimeric systems: generation-dependent clusteroluminescence towards multicolor cell imaging and molecular ruler. Science China Chemistry, 2021, 64, 1990-1998.	8.2	25
84	In Situ Monitoring of RAFT Polymerization by Tetraphenylethyleneâ€Containing Agents with Aggregationâ€Induced Emission Characteristics. Angewandte Chemie, 2018, 130, 6382-6386.	2.0	24
85	Diagnosis of fatty liver disease by a multiphoton-active and lipid-droplet-specific AlEgen with nonaromatic rotors. Materials Chemistry Frontiers, 2021, 5, 1853-1862.	5.9	22
86	Multicationic AlEgens for unimolecular photodynamic theranostics and two-photon fluorescence bioimaging. Materials Chemistry Frontiers, 2020, 4, 1623-1633.	5.9	20
87	Visualizing and monitoring interface structures and dynamics by luminogens with aggregation-induced emission. Journal of Applied Physics, 2019, 126, 050901.	2.5	19
88	The mysterious blue emission around 440 nm in carbonylâ€based aliphatic clusteroluminogens. Journal of Polymer Science, 2022, 60, 2127-2135.	3.8	19
89	Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. Angewandte Chemie, 2019, 131, 4584-4588.	2.0	14
90	New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angewandte Chemie, 2020, 132, 9379-9384.	2.0	14

#	Article	IF	CITATIONS
91	Taming Reactive Oxygen Species: Mitochondria-Targeting Aggregation-Induced Emission Luminogen for Neuron Protection via Photosensitization-Triggered Autophagy. CCS Chemistry, 2022, 4, 2249-2257.	7.8	14
92	Hydrogen bonding-induced oxygen clusters and long-lived room temperature phosphorescence from amorphous polyols. Chinese Chemical Letters, 2023, 34, 107684.	9.0	14
93	Platinum-AlEgen coordination complex for imaging-guided annihilation of cisplatin-resistant cancer cells. Chemical Communications, 2020, 56, 7785-7788.	4.1	13
94	Visualizing changes of molecular conformation in the solid-state by a common structural determination technique: single crystal X-ray diffraction. Materials Chemistry Frontiers, 2021, 5, 341-346.	5.9	12
95	3,4,5-Triphenyl-1,2,4-triazole-based multifunctional n-type AlEgen. Science China Chemistry, 2017, 60, 635-641.	8.2	11
96	Ferrocene-based hyperbranched poly(phenyltriazolylcarboxylate)s: synthesis by phenylpropiolate-azide polycycloaddition and use as precursors to nanostructured magnetoceramics. Polymer Chemistry, 2019, 10, 5931-5938.	3.9	11
97	An unexpected non-conjugated AlEgen with a discrete dimer for pure intermolecular through-space charge transfer emission. Chemical Science, 2021, 12, 15928-15934.	7.4	11
98	Pillarareneâ€Induced Intramolecular Throughâ€Space Charge Transfer and Singleâ€Molecule Whiteâ€Light Emission. Angewandte Chemie, 2022, 134, .	2.0	11
99	A Mitochondriaâ€ŧargeted AlEgen Labelled with ¹⁸ F for Breast Cancer Cell Imaging and Therapy. Chemistry - an Asian Journal, 2021, 16, 3963-3969.	3.3	9
100	Altering Chain Flexibility of Aliphatic Polyesters for Yellowâ€Green Clusteroluminescence in 38 % Quantum Yield. Angewandte Chemie, 2022, 134, .	2.0	7
101	Poly(1-halogen-2-phenylacetylenes) containing tetraphenylethene units: polymer synthesis, unique emission behaviours and application in explosive detection. Materials Chemistry Frontiers, 2022, 6, 368-378.	5.9	6
102	Aggregationâ€Induced Emission Luminogens for Direct Exfoliation of 2D Layered Materials in Ethanol. Advanced Materials Interfaces, 2020, 7, 2000795.	3.7	5
103	Chemiluminescence Resonance Energy Transfer Efficiency and Donor–Acceptor Distance: from Qualitative to Quantitative. Angewandte Chemie, 2021, 133, 13139-13144.	2.0	5
104	An Air-Stable Organic Radical from a Controllable Photoinduced Domino Reaction of a Hexa-aryl Substituted Anthracene. Journal of Organic Chemistry, 2021, 86, 7359-7369.	3.2	5
105	Diversity-Oriented Synthesis of Functional Polymers with Multisubstituted Small Heterocycles by Facile Stereoselective Multicomponent Polymerizations. Macromolecules, 2022, 55, 4389-4401.	4.8	4
106	Aggregation and chirality. , 2018, , .		3
107	A Comparative Analysis of Convergence Rate for Imbalanced Datasets of Active Learning Models. , 2018, , .		0
108	Water-mediated through-space-conjugation of aromatic groups for stimuli-responsive photoluminescence. Giant, 2020, 3, 100028.	5.1	0