Rohit Srivastava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11051817/publications.pdf

Version: 2024-02-01

117 4,133 34
papers citations h-index

120 120 120 6242 all docs docs citations times ranked citing authors

60

g-index

#	Article	IF	Citations
1	Biodegradable Protein-Stabilized Inorganic Nanoassemblies for Photothermal Radiotherapy of Hepatoma Cells. ACS Omega, 2022, 7, 8928-8937.	3.5	1
2	Nontoxic In Vivo Clearable Nanoparticle Clusters for Theranostic Applications. ACS Biomaterials Science and Engineering, 2022, 8, 2053-2065.	5.2	5
3	Graphene-Based Nanomaterials in Cancer Therapy. , 2021, , 95-125.		2
4	Graphene Nanomaterials for Multi-modal Bioimaging and Diagnosis of Cancer., 2021,, 69-93.		0
5	Hydrothermal-Assisted Synthesis and Stability of Multifunctional MXene Nanobipyramids: Structural, Chemical, and Optical Evolution. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3011-3023.	8.0	36
6	Physicochemical Properties and Toxicity Analysis. , 2021, , 49-67.		0
7	Graphene-Based Nanomaterials: Introduction, Structure, Synthesis, Characterization, and Properties., 2021,, 23-48.		O
8	Bioinspired smart nanohybrids for stimuli responsive drug delivery. , 2021, , 55-74.		0
9	Design and Development of Axially Chiral Bis(naphthofuran) Luminogens as Fluorescent Probes for Cell Imaging. Chemistry - A European Journal, 2021, 27, 5470-5482.	3.3	15
10	Influence of Surface States on the Optical and Cellular Property of Thermally Stable Red Emissive Graphitic Carbon Dots. ACS Applied Bio Materials, 2021, 4, 4641-4651.	4.6	7
11	Recent advances in point-of-care diagnostics for oral cancer. Biosensors and Bioelectronics, 2021, 178, 112995.	10.1	20
12	Synthesis and characterization of an injectable microparticles integrated hydrogel composite biomaterial: In-vivo biocompatibility and inflammatory arthritis treatment. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111597.	5.0	15
13	Photo-Triggered Nanomaterials for Cancer Theranostic Applications. Nano LIFE, 2021, 11, 2130004.	0.9	4
14	Emissive radiodense stealth plasmonic nanohybrid as X-ray contrast and photo-ablative agent of cancer cells. Materials Today Communications, 2021, 27, 102181.	1.9	2
15	Nanoengineered photoactive theranostic agents for cancer. Nanophotonics, 2021, 10, 2973-2997.	6.0	11
16	Raman micro-spectroscopic map estimating in vivo precision of tumor ablative effect achieved by photothermal therapy procedure. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102437.	3.3	1
17	Natural biopolymeric nanomaterials for tissue engineering: overview and recent advances. , 2021, , 675-696.		1
18	Ultrahigh Penetration and Retention of Graphene Quantum Dot Mesoporous Silica Nanohybrids for Image Guided Tumor Regression. ACS Applied Bio Materials, 2021, 4, 1693-1703.	4.6	14

#	Article	IF	CITATIONS
19	Light-triggered selective ROS-dependent autophagy by bioactive nanoliposomes for efficient cancer theranostics. Nanoscale, 2020, 12, 2028-2039.	5.6	38
20	Zinc oxide nanoparticles decorated fluorescent and antibacterial glass fiber pre-filter paper. Nano Express, 2020, 1, 010048.	2.4	1
21	Nanobiotechnology approaches for miniaturized diagnostics. , 2020, , 297-333.		1
22	Rationally Designed Furocarbazoles as Multifunctional Aggregation Induced Emissive Luminogens for the Sensing of Trinitrophenol (TNP) and Cell Imaging. ChemPhotoChem, 2020, 4, 691-703.	3.0	11
23	Preclinical evaluation of multi stimuli responsive core-plasmonic nanoshell for photo-triggered tumor ablation: A disintegrable nanohybrid. Applied Materials Today, 2020, 20, 100684.	4.3	5
24	Liposomal nanotheranostics for multimode targeted in vivo bioimaging and nearâ€infrared light mediated cancer therapy. Communications Biology, 2020, 3, 284.	4.4	46
25	Antihepatoma activity of multifunctional polymeric nanoparticles via inhibition of microtubules and tyrosine kinases. Nanomedicine, 2020, 15, 381-396.	3.3	5
26	Selection of superior targeting ligands using PEGylated PLGA nanoparticles for delivery of curcumin in the treatment of triple-negative breast cancer cells. Journal of Drug Delivery Science and Technology, 2020, 57, 101722.	3.0	23
27	Nanobiotechnology Advancements in Lateral Flow Immunodiagnostics. , 2020, , 181-204.		1
28	Advances in Polysaccharide-Based Antimicrobial Delivery Vehicles., 2020,, 267-295.		1
29	Graphene Oxide Supported Liposomes as Red Emissive Theranostics for Phototriggered Tissue Visualization and Tumor Regression. ACS Applied Bio Materials, 2019, 2, 3312-3320.	4.6	30
30	Chitosan-polycaprolactone blend sponges for management of chronic osteomyelitis: A preliminary characterization and in vitro evaluation. International Journal of Pharmaceutics, 2019, 568, 118553.	5.2	25
31	The "nano to micro―transition of hydrophobic curcumin crystals leading to ⟨i⟩in situ⟨/i⟩ adjuvant depots for Au-liposome nanoparticle mediated enhanced photothermal therapy. Biomaterials Science, 2019, 7, 3866-3875.	5.4	34
32	Quercetin Encapsulated Biodegradable Plasmonic Nanoparticles for Photothermal Therapy of Hepatocellular Carcinoma Cells. ACS Applied Bio Materials, 2019, 2, 5727-5738.	4.6	21
33	Niclosamide encapsulated polymeric nanocarriers for targeted cancer therapy. RSC Advances, 2019, 9, 26572-26581.	3.6	13
34	Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics. Materials Science and Engineering C, 2019, 103, 109774.	7.3	68
35	Chitosan sponges as a sustained release carrier system for the prophylaxis of orthopedic implant-associated infections. International Journal of Biological Macromolecules, 2019, 134, 100-112.	7. 5	33
36	Process parameter optimization for lateral flow immunosensing. Materials Science for Energy Technologies, 2019, 2, 434-441.	1.8	18

3

#	Article	IF	Citations
37	Timing The Therapeutic Trigger of Au Lipos Cur NPs for Effective Photothermal Therapy. , 2019, , .		3
38	Design and Development of Quantum Dots Infused Films and an Optical Reader for Measurement of Blood Electrolytes. , 2019, , .		0
39	Optical Properties of Plasmonic Gold: A Possible Application for Screening of Cervical Cancer. , 2019, ,		1
40	Multi-fluorescent cationic carbon dots for solid-state fingerprinting. Journal of Luminescence, 2019, 208, 428-436.	3.1	25
41	Mini submersible pump assisted sonochemical reactors: Large-scale synthesis of zinc oxide nanoparticles and nanoleaves for antibacterial and anti-counterfeiting applications. Ultrasonics Sonochemistry, 2019, 52, 414-427.	8.2	23
42	Cefuroxime conjugated chitosan hydrogel for treatment of wound infections. Colloids and Surfaces B: Biointerfaces, 2019, 173, 776-787.	5.0	52
43	Dragon fruit extract capped gold nanoparticles: Synthesis and their differential cytotoxicity effect on breast cancer cells. Materials Letters, 2019, 236, 498-502.	2.6	57
44	Fluorescence lateral flow immunoassay based point-of-care nanodiagnostics for orthopedic implant-associated infection. Sensors and Actuators B: Chemical, 2019, 280, 24-33.	7.8	62
45	Glycol chitosan assisted in situ reduction of gold on polymeric template for anti-cancer theranostics. International Journal of Biological Macromolecules, 2018, 110, 392-398.	7.5	15
46	Cyclodextrin-stabilized Gold nanoclusters for bioimaging and selective label-free intracellular sensing of Co2+ ions. Sensors and Actuators B: Chemical, 2018, 262, 270-281.	7.8	32
47	Disintegrable NIR Light Triggered Gold Nanorods Supported Liposomal Nanohybrids for Cancer Theranostics. Bioconjugate Chemistry, 2018, 29, 1510-1518.	3.6	40
48	Chitosan nanoparticles and povidone iodine containing alginate gel for prevention and treatment of orthopedic implant associated infections. International Journal of Biological Macromolecules, 2018, 115, 1131-1141.	7. 5	36
49	Facile synthesis of plasmonic zein nanoshells for imaging-guided photothermal cancer therapy. Materials Science and Engineering C, 2018, 90, 539-548.	7. 3	28
50	Methotrexate loaded alginate microparticles and effect of Ca2+ post-crosslinking: An in vitro physicochemical and biological evaluation. International Journal of Biological Macromolecules, 2018, 110, 294-307.	7. 5	12
51	Chlorophyll rich biomolecular fraction of A. cadamba loaded into polymeric nanosystem coupled with Photothermal Therapy: A synergistic approach for cancer theranostics. International Journal of Biological Macromolecules, 2018, 110, 383-391.	7.5	38
52	Zinc oxide nanoleaves: A scalable disperser-assisted sonochemical approach for synthesis and an antibacterial application. Ultrasonics Sonochemistry, 2018, 41, 47-58.	8.2	40
53	NIR triggered liposome gold nanoparticles entrapping curcumin as in situ adjuvant for photothermal treatment of skin cancer. International Journal of Biological Macromolecules, 2018, 110, 375-382.	7.5	81
54	Methotrexate loaded gellan gum microparticles for drug delivery. International Journal of Biological Macromolecules, 2018, 110, 346-356.	7. 5	46

#	Article	IF	CITATIONS
55	Enhanced EPR directed and Imaging guided Photothermal Therapy using Vitamin E Modified Toco-Photoxil. Scientific Reports, 2018, 8, 16673.	3.3	18
56	A biodegradable fluorescent nanohybrid for photo-driven tumor diagnosis and tumor growth inhibition. Nanoscale, 2018, 10, 19082-19091.	5.6	30
57	<i>In Vivo</i> Examination of Folic Acid-Conjugated Gold-Silica Nanohybrids as Contrast Agents for Localized Tumor Diagnosis and Biodistribution. Bioconjugate Chemistry, 2018, 29, 4012-4019.	3.6	18
58	Plasmonic carbon nanohybrids for repetitive and highly localized photothermal cancer therapy. Colloids and Surfaces B: Biointerfaces, 2018, 172, 430-439.	5.0	15
59	Monoterpenoid derivative based ratiometric fluorescent chemosensor for bioimaging and intracellular detection of Zn2+ and Mg2+ ions. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 758-763.	3.9	26
60	Embelin-Mediated Green Synthesis of Quasi-Spherical and Star-Shaped Plasmonic Nanostructures for Antibacterial Activity, Photothermal Therapy, and Computed Tomographic Imaging. ACS Sustainable Chemistry and Engineering, 2018, 6, 10562-10577.	6.7	21
61	Fluorescence Stability of Mercaptopropionic Acid Capped Cadmium Telluride Quantum Dots in Various Biochemical Buffers. Journal of Nanoscience and Nanotechnology, 2018, 18, 2582-2591.	0.9	9
62	Dual-purpose Injectable Doxorubicin Conjugated Alginate Gel Containing Polycaprolactone Microparticles for Anti-Cancer and Anti-Inflammatory Therapy. Current Drug Delivery, 2018, 15, 716-726.	1.6	9
63	Benzothiazoles-substituted tetraphenylethylenes: synthesis, structure, aggregation-induced emission and biological studies. Materials Chemistry Frontiers, 2017, 1, 1207-1216.	5.9	31
64	Evolution of thiol-capped gold nanoclusters into larger gold nanoparticles under electron beam irradiation. Micron, 2017, 95, 1-6.	2.2	16
65	Highly selective optical and reversible dual-path chemosensor for cyanide detection and its application in live cells imaging. Biosensors and Bioelectronics, 2017, 92, 95-100.	10.1	40
66	N-doped multi-fluorescent carbon dots for †turn off-on†silver-biothiol dual sensing and mammalian cell imaging application. Sensors and Actuators B: Chemical, 2017, 248, 481-492.	7.8	95
67	Multifunctional graphene quantum dots for combined photothermal and photodynamic therapy coupled with cancer cell tracking applications. RSC Advances, 2017, 7, 5251-5261.	3.6	115
68	Graphene Quantum Dots from <i>Mangifera indica</i> : Application in Near-Infrared Bioimaging and Intracellular Nanothermometry. ACS Sustainable Chemistry and Engineering, 2017, 5, 1382-1391.	6.7	273
69	Injectable methotrexate loaded polycaprolactone microspheres: Physicochemical characterization, biocompatibility, and hemocompatibility evaluation. Materials Science and Engineering C, 2017, 81, 542-550.	7.3	36
70	Rapid, One-Pot, Protein-Mediated Green Synthesis of Gold Nanostars for Computed Tomographic Imaging and Photothermal Therapy of Cancer. ACS Sustainable Chemistry and Engineering, 2017, 5, 10163-10175.	6.7	26
71	NIR light-triggered shrinkable thermoresponsive PNVCL nanoshells for cancer theranostics. RSC Advances, 2017, 7, 44026-44034.	3.6	20
72	A novel terephthalaldehyde based turn-on fluorescent chemosensor for Cu2+ and its application in imaging of living cells. Photochemical and Photobiological Sciences, 2017, 16, 1464-1470.	2.9	10

#	Article	IF	Citations
73	pH and Urea Estimation in Urine Samples using Single Fluorophore and Ratiometric Fluorescent Biosensors. Scientific Reports, 2017, 7, 5840.	3.3	31
74	Graphene Quantum Dots for Cell Proliferation, Nucleus Imaging, and Photoluminescent Sensing Applications. Scientific Reports, 2017, 7, 15858.	3.3	151
75	Development and testing of portable fluorescence reader (PorFloRâ,,¢)., 2017, , .		8
76	Magnetic core-shell hybrid nanoparticles for receptor targeted anti-cancer therapy and magnetic resonance imaging. Journal of Colloid and Interface Science, 2017, 486, 112-120.	9.4	64
77	Nanomedicine for Cancer Therapy. SpringerBriefs in Applied Sciences and Technology, 2017, , 1-68.	0.4	0
78	Near Infrared Fluorescence Imaging in Nano-Therapeutics and Photo-Thermal Evaluation. International Journal of Molecular Sciences, 2017, 18, 924.	4.1	40
79	Assessing Therapeutic Potential of Magnetic Mesoporous Nanoassemblies for Chemo-Resistant Tumors. Theranostics, 2016, 6, 1557-1572.	10.0	10
80	Enhanced anticancer efficacy of folate-grafted lipid modified dual drug loaded nanoassemblies to reduce drug resistance in ovarian cancer. Biomedical Physics and Engineering Express, 2016, 2, 065005.	1.2	2
81	CdTe quantum dots: aqueous phase synthesis, stability studies and protein conjugation for development of biosensors. Proceedings of SPIE, 2016, , .	0.8	4
82	Albumin stabilized gold nanostars: a biocompatible nanoplatform for SERS, CT imaging and photothermal therapy of cancer. RSC Advances, 2016, 6, 84025-84034.	3.6	25
83	Protein-Poly(amino acid) Nanocore–Shell Mediated Synthesis of Branched Gold Nanostructures for Computed Tomographic Imaging and Photothermal Therapy of Cancer. ACS Applied Materials & Discrete Sensitive	8.0	50
84	Intracellular interactions of electrostatically mediated layer-by-layer assembled polyelectrolytes based sorafenib nanoparticles in oral cancer cells. Colloids and Surfaces B: Biointerfaces, 2016, 143, 131-138.	5.0	27
85	Bioresponsive carbon nano-gated multifunctional mesoporous silica for cancer theranostics. Nanoscale, 2016, 8, 4537-4546.	5.6	64
86	†Turn-on' fluorescence assay for inorganic phosphate sensing. Sensors and Actuators B: Chemical, 2016, 225, 340-347.	7.8	54
87	Nanobiotechnology Perspectives on Prevention and Treatment of Ortho-paedic Implant Associated Infection. Current Drug Delivery, 2016, 13, 175-185.	1.6	22
88	Synthesis of albumin nanoparticles with a natural multi-therapeutic crosslinker - embelin., 2015,,.		2
89	In Vivo Analysis of Biodegradable Liposome Gold Nanoparticles as Efficient Agents for Photothermal Therapy of Cancer. Nano Letters, 2015, 15, 842-848.	9.1	338
90	IR 820 stabilized multifunctional polycaprolactone glycol chitosan composite nanoparticles for cancer therapy. RSC Advances, 2015, 5, 56162-56170.	3.6	32

#	Article	IF	Citations
91	IR 820 dye encapsulated in polycaprolactone glycol chitosan: Poloxamer blend nanoparticles for photo immunotherapy for breast cancer. Materials Science and Engineering C, 2015, 57, 321-327.	7.3	54
92	Nanodrug delivery in reversing multidrug resistance in cancer cells. Frontiers in Pharmacology, 2014, 5, 159.	3.5	175
93	FITC-tagged macromolecule-based alginate microspheres for urea sensoring. Proceedings of SPIE, 2014,	0.8	1
94	Oxygen sensing glucose biosensors based on alginate nano-micro systems. Proceedings of SPIE, 2014, , .	0.8	1
95	Gold Nanocages as Effective Photothermal Transducers in Killing Highly Tumorigenic Cancer Cells. Particle and Particle Systems Characterization, 2014, 31, 398-405.	2.3	28
96	Multifunctional gold coated thermo-sensitive liposomes for multimodal imaging and photo-thermal therapy of breast cancer cells. Nanoscale, 2014, 6, 916-923.	5.6	133
97	Composite alginate microspheres as the next-generation egg-box carriers for biomacromolecules delivery. Expert Opinion on Drug Delivery, 2013, 10, 1061-1076.	5.0	35
98	Uric acid biosensor based on chemiluminescence detection using a nano-micro hybrid matrix. Sensors and Actuators B: Chemical, 2012, 173, 882-889.	7.8	35
99	Multifunctional alginate microspheres for biosensing, drug delivery and magnetic resonance imaging. Acta Biomaterialia, 2011, 7, 3955-3963.	8.3	67
100	Cholesterol biosensors based on oxygen sensing alginateâ€silica microspheres. Biotechnology and Bioengineering, 2011, 108, 2011-2021.	3.3	24
101	In vitro and in vivo evaluation of anti-inflammatory agents using nanoengineered alginate carriers: Towards localized implant inflammation suppression. International Journal of Pharmaceutics, 2011, 403, 268-275.	5.2	39
102	"Smart Tattoo―Glucose Biosensors and Effect of Coencapsulated Anti-Inflammatory Agents. Journal of Diabetes Science and Technology, 2011, 5, 76-85.	2.2	32
103	Glucose Response of Near-Infrared Alginate-Based Microsphere Sensors Under Dynamic Reversible Conditions. Diabetes Technology and Therapeutics, 2011, 13, 827-835.	4.4	13
104	Nano-in-micro alginate based hybrid particles. Carbohydrate Polymers, 2010, 81, 790-798.	10.2	45
105	Nanoengineered optical urea biosensor for estimating hemodialysis parameters in spent dialysate. Analytica Chimica Acta, 2010, 676, 68-74.	5.4	23
106	Glucose response of dissolved-core alginate microspheres: towards a continuous glucose biosensor. Analyst, The, 2010, 135, 2620.	3.5	24
107	Dissolved core alginate microspheres as "smart-tattoo" glucose sensors. , 2009, 2009, 4098-101.		0
108	Evaluation of glucose sensitive affinity binding assay entrapped in fluorescent dissolvedâ€core alginate microspheres. Biotechnology and Bioengineering, 2009, 104, 1075-1085.	3.3	23

7

#	Article	IF	CITATION
109	Polyelectrolyte Coated Calcium Carbonate Microparticles as Templates for Enzyme Encapsulation. Advanced Science Letters, 2009, 2, 329-336.	0.2	10
110	Alginate Microspheres Comprising Multilayered Assemblies of Cresol Red and Polyelectrolytes Towards an Optical Urea Biosensor. , 2008, , .		1
111	Glucose Sensing Using Competitive Binding Assay Co-Encapsulated in Uniform Sized Alginate Microspheres. Sensor Letters, 2008, 6, 253-260.	0.4	12
112	Enzymatic Fluorescent Microsphere Glucose Sensors: Evaluation of Response Under Dynamic Conditions. Diabetes Technology and Therapeutics, 2006, 8, 288-295.	4.4	31
113	Encapsulation of glucose oxidase and an oxygen-quenched fluorophore in polyelectrolyte-coated calcium alginate microspheres as optical glucose sensor systems. Biosensors and Bioelectronics, 2005, 21, 212-216.	10.1	115
114	Stabilization of glucose oxidase in alginate microspheres with photoreactive diazoresin nanofilm coatings. Biotechnology and Bioengineering, 2005, 91, 124-131.	3.3	53
115	Stable Encapsulation of Active Enzyme by Application of Multilayer Nanofilm Coatings to Alginate Microspheres. Macromolecular Bioscience, 2005, 5, 717-727.	4.1	84
116	Combined Physical and Chemical Immobilization of Glucose Oxidase in Alginate Microspheres Improves Stability of Encapsulation and Activity. Bioconjugate Chemistry, 2005, 16, 1451-1458.	3.6	141
117	Spontaneous Loading of Positively Charged Macromolecules into Alginate-Templated Polyelectrolyte Multilayer Microcapsules. Biomacromolecules, 2005, 6, 2221-2228.	5.4	100