List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11051786/publications.pdf Version: 2024-02-01

HI MAIED

#	Article	IF	CITATIONS
1	On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. International Journal of Fatigue, 2013, 48, 300-307.	2.8	1,080
2	Deformation of single crystal Hadfield steel by twinning and slip. Acta Materialia, 2000, 48, 1345-1359.	3.8	364
3	Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Materialia, 2002, 50, 4643-4657.	3.8	347
4	Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Materialia, 2004, 52, 3383-3402.	3.8	302
5	Modeling the deformation behavior of Hadfield steel single and polycrystals due to twinning and slip. Acta Materialia, 2000, 48, 2031-2047.	3.8	254
6	Compressive response of NiTi single crystals. Acta Materialia, 2000, 48, 3311-3326.	3.8	249
7	Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 588, 188-195.	2.6	212
8	Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Materialia, 2013, 61, 7422-7431.	3.8	209
9	Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen. Acta Materialia, 2001, 49, 3919-3933.	3.8	196
10	In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7962-7967.	2.6	175
11	High temperature fatigue behavior and residual stress stability of laser-shock peened and deep rolled austenitic steel AISI 304. Scripta Materialia, 2004, 50, 1345-1350.	2.6	171
12	Instrumented micro-indentation of NiTi shape-memory alloys. Acta Materialia, 2001, 49, 3205-3217.	3.8	151
13	Additively manufactured cellular structures: Impact of microstructure and local strains on the monotonic and cyclic behavior under uniaxial and bending load. Journal of Materials Processing Technology, 2013, 213, 1558-1564.	3.1	144
14	Shape memory and pseudoelastic behavior of 51.5%Ni–Ti single crystals in solutionized and overaged state. Acta Materialia, 2001, 49, 3609-3620.	3.8	140
15	Plastic deformation of NiTi shape memory alloys. Acta Materialia, 2013, 61, 67-78.	3.8	139
16	On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys. Acta Materialia, 2007, 55, 4253-4269.	3.8	134
17	Strain hardening behavior of aluminum alloyed Hadfield steel single crystals. Acta Materialia, 2005, 53, 1831-1842.	3.8	122
18	The Bauschinger effect, Masing model and the Ramberg–Osgood relation for cyclic deformation in metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 238, 377-390.	2.6	116

#	Article	IF	CITATIONS
19	Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 97-104.	2.6	115
20	The role of monotonic pre-deformation on the fatigue performance of a high-manganese austenitic TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 499, 518-524.	2.6	115
21	Effect of precipitation on mechanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy. Wear, 2014, 311, 149-158.	1.5	99
22	Extrinsic stacking faults and twinning in hadfield manganese steel single crystals. Scripta Materialia, 2001, 44, 337-343.	2.6	94
23	Cyclic stress–strain response of ultrafine grained copper. International Journal of Fatigue, 2006, 28, 243-250.	2.8	92
24	Recoverable stress-induced martensitic transformation in a ferromagnetic CoNiAl alloy. Scripta Materialia, 2003, 49, 831-836.	2.6	88
25	Inter-martensitic transitions in Ni–Fe–Ga single crystals. Acta Materialia, 2007, 55, 4867-4876.	3.8	88
26	Fatigue crack growth—Microstructure relationships in a high-manganese austenitic TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2412-2417.	2.6	83
27	Energetics of twinning in martensitic NiTi. Acta Materialia, 2011, 59, 5893-5904.	3.8	81
28	Full-field strain evolution during intermartensitic transformations in single-crystal NiFeGa. Acta Materialia, 2008, 56, 3791-3799.	3.8	79
29	Effect of strain rate on hydrogen embrittlement susceptibility of twinning-induced plasticity steel pre-charged with high-pressure hydrogen gas. International Journal of Hydrogen Energy, 2016, 41, 15362-15372.	3.8	79
30	Flow stress anisotropy and Bauschinger effect in ultrafine grained copper. Acta Materialia, 2006, 54, 5477-5488.	3.8	77
31	Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression. Scripta Materialia, 2006, 55, 663-666.	2.6	77
32	Stress-assisted reversible magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys. Scripta Materialia, 2006, 55, 403-406.	2.6	76
33	Laser induced surface nano-structuring of Ti–6Al–4V for adhesive bonding. International Journal of Adhesion and Adhesives, 2013, 45, 112-117.	1.4	75
34	Effect of commercial purity levels on the mechanical properties of ultrafine-grained titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2303-2308.	2.6	73
35	Deformation of FeNiCoTi shape memory single crystals. Scripta Materialia, 2001, 44, 779-784.	2.6	70
36	Pseudoelasticity in Co–Ni–Al single and polycrystals. Acta Materialia, 2006, 54, 587-599.	3.8	66

#	Article	IF	CITATIONS
37	Long-range internal stresses in cell and subgrain structures of copper during deformation at constant stress. Acta Materialia, 1996, 44, 4337-4350.	3.8	63
38	Mechanical and thermal stability of mechanically induced near-surface nanostructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 403, 318-327.	2.6	62
39	Anisotropy of the fatigue behaviour of cancellous bone. Journal of Biomechanics, 2008, 41, 636-641.	0.9	60
40	On the low-cycle fatigue response of pre-strained austenitic Fe61Mn24Ni6.5Cr8.5 alloy showing TWIP effect. International Journal of Fatigue, 2012, 40, 51-60.	2.8	59
41	Pseudoelasticity and Cyclic Stability in Co49Ni21Ga30 Shape-Memory Alloy Single Crystals at Ambient Temperature. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 2026-2039.	1.1	58
42	Corrosion fatigue behavior of a biocompatible ultrafine-grained niobium alloy in simulated body fluid. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 5, 181-192.	1.5	58
43	Equal-channel angular sheet extrusion of interstitial-free (IF) steel: Microstructural evolution and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6573-6583.	2.6	57
44	High-temperature fatigue damage mechanisms in near-α titanium alloy IMI 834. International Journal of Fatigue, 1999, 21, 779-789.	2.8	55
45	Tension/compression asymmetry of functional properties in [001]-oriented ferromagnetic NiFeGaCo single crystals. Intermetallics, 2010, 18, 2458-2463.	1.8	55
46	Comparative analysis of the effects of severe plastic deformation and thermomechanical training on the functional stability of Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Scripta Materialia, 2011, 64, 315-318.	2.6	53
47	Cyclic degradation mechanisms in aged FeNiCoAlTa shape memory single crystals. Acta Materialia, 2014, 79, 126-137.	3.8	53
48	Strain–temperature behavior of NiTiCu shape memory single crystals. Acta Materialia, 2001, 49, 3621-3634.	3.8	52
49	Microstructure–mechanical property relationships in ultrafine-grained NbZr. Acta Materialia, 2007, 55, 6596-6605.	3.8	52
50	Mechanical response of low stacking fault energy Co–Ni alloys – Continuum, mesoscopic and atomic level treatments. International Journal of Plasticity, 2015, 71, 32-61.	4.1	51
51	Dislocation slip stress prediction in shape memory alloys. International Journal of Plasticity, 2014, 54, 247-266.	4.1	50
52	Strength prediction in NiCo alloys – The role of composition and nanotwins. International Journal of Plasticity, 2016, 79, 237-258.	4.1	50
53	On the Microstructural Stability of Ultrafine-Grained Interstitial-Free Steel under Cyclic Loading. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1946-1955.	1.1	49
54	Microstructural refinement and deformation twinning during severe plastic deformation of 316L stainless steel at high temperatures. Journal of Materials Research, 2004, 19, 2268-2278.	1.2	47

HJ MAIER

#	Article	IF	CITATIONS
55	Shape memory and pseudoelasticity response of NiMnCoIn magnetic shape memory alloy single crystals. Scripta Materialia, 2008, 58, 815-818.	2.6	47
56	Monitoring the fatigue-induced damage evolution in ultrafine-grained interstitial-free steel utilizing digital image correlation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 225-234.	2.6	47
57	The role of heat treatment on the cyclic stress–strain response of ultrafine-grained interstitial-free steel. International Journal of Fatigue, 2008, 30, 426-436.	2.8	46
58	Microstructure and transformation related behaviors of a Ni45.3Ti29.7Hf20Cu5 high temperature shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 82-94.	2.6	44
59	Transformation of Co–Ni–Al single crystals in tension. Scripta Materialia, 2005, 53, 131-136.	2.6	43
60	Evaluation of passive oxide layer formation–biocompatibility relationship in NiTi shape memory alloys: Geometry and body location dependency. Materials Science and Engineering C, 2014, 36, 118-129.	3.8	42
61	Orientation evolution in Hadfield steel single crystals under combined slip and twinning. International Journal of Solids and Structures, 2007, 44, 34-50.	1.3	41
62	The role of dense dislocation walls on the deformation response of aluminum alloyed hadfield steel polycrystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 662-666.	2.6	40
63	Cyclic stress–strain response and low-cycle fatigue damage in ultrafine grained copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 457-461.	2.6	39
64	A method to evaluate the critical hydrogen concentration for hydrogen-induced crack propagation. Acta Metallurgica, 1987, 35, 875-880.	2.1	38
65	Local lattice parameter measurements in a creep-deformed nickel-base superalloy by convergent beam electron diffraction. Scripta Metallurgica Et Materialia, 1992, 27, 1167-1172.	1.0	38
66	In-situ fatigue in an environmental scanning electron microscope – Potential and current limitations. International Journal of Fatigue, 2007, 29, 1413-1425.	2.8	38
67	Transformation and slip behavior of Ni2FeGa. International Journal of Plasticity, 2012, 39, 61-74.	4.1	38
68	Hysteresis and deformation mechanisms of transforming FeNiCoTi. Mechanics of Materials, 2006, 38, 538-550.	1.7	37
69	Shape memory effect and high-temperature superelasticity in high-strength single crystals. Journal of Alloys and Compounds, 2013, 577, S393-S398.	2.8	36
70	Functional and structural fatigue of titanium tantalum high temperature shape memory alloys (HT) Tj ETQqO 0 (Processing, 2015, 620, 359-366.) rgBT /Ov 2.6	erlock 10 Tf 5 36
71	Effects of hydrogen on ductile fracture of a spheroidized low alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 191, 17-26.	2.6	34
72	Microstructure and mechanical response of single-crystalline high-manganese austenitic steels under high-pressure torsion: The effect of stacking-fault energy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 604, 166-175.	2.6	33

#	Article	IF	CITATIONS
73	Fatigue damage in cancellous bone: An experimental approach from continuum to micro scale. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 113-119.	1.5	32
74	Superelastic cycling and room temperature recovery of Ti74Nb26 shape memory alloy. Acta Materialia, 2010, 58, 2216-2224.	3.8	32
75	On the volume change in Co–Ni–Al during pseudoelasticity. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 2875-2881.	2.6	32
76	The role of twinning on microstructure and mechanical response of severely deformed single crystals of high-manganese austenitic steel. Materials Characterization, 2011, 62, 588-592.	1.9	30
77	Cyclic deformation and austenite stabilization in Co35Ni35Al30 single crystalline high-temperature shape memory alloys. Acta Materialia, 2009, 57, 6123-6134.	3.8	29
78	Effect of internal oxidation on wear behavior of ultrafine-grained Nb–Zr. Acta Materialia, 2011, 59, 7683-7694.	3.8	29
79	On the micro-deformation mechanisms active in high-manganese austenitic steels under impact loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 632, 29-34.	2.6	28
80	Twinning activities in high-Mn austenitic steels under high-velocity compressive loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 648, 104-112.	2.6	28
81	Thermal cycling behavior of an aged FeNiCoAlTa single-crystal shape memory alloy. Scripta Materialia, 2014, 81, 28-31.	2.6	27
82	Two-way shape memory effect under multi-cycles in [001]-oriented Ni49Fe18Ga27Co6 single crystal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 706, 95-103.	2.6	27
83	The effect of strain rate on hydrogen distribution in round tensile specimens. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 271, 22-30.	2.6	26
84	High-temperature superelasticity and competing microstructural mechanisms in Co49Ni21Ga30 shape memory alloy single crystals under tension. Scripta Materialia, 2010, 62, 368-371.	2.6	26
85	Two-way shape memory effect and thermal cycling stability in Co35Ni35Al30 single crystals by low-temperature martensite ageing. Scripta Materialia, 2018, 150, 18-21.	2.6	26
86	In-situ characterization of transformation plasticity during an isothermal austenite-to-bainite phase transformation. Materials Characterization, 2012, 65, 100-108.	1.9	25
87	Modeling of cyclic stress–strain behavior and damage mechanisms under thermomechanical fatigue conditions. International Journal of Fatigue, 1997, 19, 267-274.	2.8	24
88	High-resolution in-situ characterization of the surface evolution of a polycrystalline NiTi SMA-alloy under pseudoelastic deformation. Materials Characterization, 2011, 62, 298-303.	1.9	24
89	PM-IRRAS studies of the adsorption and stability of organophosphonate monolayers on passivated NiTi surfaces. Applied Surface Science, 2011, 257, 2011-2018.	3.1	24
90	Improvement of formability of ultrafine-grained materials by post-SPD annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 119-128.	2.6	24

HJ MAIER

#	Article	IF	CITATIONS
91	Mechanical response of NiFeGa alloys containing second-phase particles. Scripta Materialia, 2007, 57, 497-499.	2.6	23
92	Improvement of the fatigue performance of an ultrafine-grained Nb–Zr alloy by nano-sized precipitates formed by internal oxidation. Scripta Materialia, 2008, 58, 571-574.	2.6	23
93	Experimental and numerical investigation of increased formability in combined quasi-static and high-speed forming processes. Journal of Materials Processing Technology, 2016, 237, 254-269.	3.1	23
94	An exploration of plastic deformation dependence of cell viability and adhesion in metallic implant materials. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 177-186.	1.5	23
95	Inter-martensite strain evolution in NiMnGa single crystals. Acta Materialia, 2008, 56, 2231-2236.	3.8	22
96	Three-dimensional modeling of the grain boundary misorientation angle distribution based on two-dimensional experimental texture measurements. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5604-5612.	2.6	21
97	Severe plastic deformation of Ti74Nb26 shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7628-7635.	2.6	21
98	On the role of slip–twin interactions on the impact behavior of high-manganese austenitic steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 593, 120-126.	2.6	21
99	Local lattice parameter measurements in cyclically deformed copper by convergent-beam electron diffraction. Ultramicroscopy, 1993, 51, 136-145.	0.8	20
100	The Influence of Zirconium on the Low-Cycle Fatigue Response of Ultrafine-Grained Copper. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1916-1925.	1.1	20
101	Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 481-482, 95-100.	2.6	20
102	Transformation and detwinning induced electrical resistance variations in NiTiCu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 359, 280-289.	2.6	19
103	One-way shape memory effect due to stress-assisted magnetic field-induced phase transformation in Ni2MnGa magnetic shape memory alloys. Scripta Materialia, 2006, 55, 803-806.	2.6	19
104	On the cyclic deformation response of ultrafine-grained Al–Mg alloys at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 496, 114-120.	2.6	19
105	In situ characterization of martensite variant formation in nickel–titanium shape memory alloy under biaxial loading. Scripta Materialia, 2011, 65, 915-918.	2.6	19
106	Cyclic stress–strain response of the ODS nickel-base, superalloy PM 1000 under variable amplitude loading at high temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 281, 37-44.	2.6	18
107	Magnetization, shape memory and hysteresis behavior of single and polycrystalline FeNiCoTi. Journal of Magnetism and Magnetic Materials, 2005, 292, 89-99.	1.0	18
108	On the simulation of austenite to bainite phase transformation. Computational Materials Science, 2011, 50, 1823-1829.	1.4	18

#	Article	IF	CITATIONS
109	Two-way shape memory effect in ferromagnetic Co 35 Ni 35 Al 30 single crystals aged under stress. Scripta Materialia, 2014, 90-91, 10-13.	2.6	18
110	Compressive shape memory actuation response of stress-induced martensite aged Ni51Fe18Ga27Co4 single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 448-455.	2.6	18
111	Modelling of cyclic stress-strain behavior under thermomechanical fatigue conditions — A new approach based upon a multi-component model. Scripta Materialia, 1996, 34, 609-615.	2.6	17
112	Thermally and stress-induced martensitic transformation in Co–Ni–Al ferromagnetic shape memory alloy single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 875-878.	2.6	17
113	On the incorporation of length scales associated with pearlitic and bainitic microstructures into a visco-plastic self-consistent model. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 485, 258-271.	2.6	17
114	Deformation mechanisms in high-manganese steels showing twinning-induced plasticity: Fine-grained material and single crystals at ambient and cryogenic temperatures. Scripta Materialia, 2012, 67, 875-878.	2.6	17
115	Anisotropy of ultrafine-grained alloys under impact loading: The case of biomedical niobium–zirconium. Scripta Materialia, 2012, 66, 435-438.	2.6	17
116	Cyclic stability of ultrafine-grained interstitial-free steel at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 503, 160-162.	2.6	16
117	Cyclic deformation response of ultra-fine grained titanium at elevated temperatures. International Journal of Fatigue, 2019, 122, 228-239.	2.8	16
118	Giant rubber-like behavior induced by martensite aging in Ni51Fe18Ga27Co4 single crystals. Scripta Materialia, 2019, 162, 387-390.	2.6	16
119	Pre-deformation–transformation plasticity relationship during martensitic transformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 625-633.	2.6	15
120	Microstructural stability of ultrafine-grained niobium–zirconium alloy at elevated temperatures. Journal of Alloys and Compounds, 2012, 517, 61-68.	2.8	15
121	Comparison of degradation behaviour and osseointegration of the two magnesium scaffolds, LAE442 and La2, in vivo. Materialia, 2019, 8, 100436.	1.3	15
122	Underlying mechanism of dual hysteresis in NiMnGa single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1877-1881.	2.6	14
123	A comprehensive evaluation of parameters governing the cyclic stability of ultrafine-grained FCC alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6345-6355.	2.6	14
124	Long-range internal stresses in steady-state subgrain structures. Scripta Metallurgica Et Materialia, 1993, 29, 7-12.	1.0	13
125	High-temperature fatigue of titanium alloys. Materials at High Temperatures, 1998, 15, 3-14.	0.5	13
126	Effect of off-stoichiometric compositions on microstructures and phase transformation behavior in Ni-Cu-Pd-Ti-Zr-Hf high entropy shape memory alloys. Journal of Alloys and Compounds, 2021, 857, 157467.	2.8	13

#	Article	IF	CITATIONS
127	On the cyclic stability of nanocrystalline copper obtained by powder consolidation at room temperature. Scripta Materialia, 2008, 58, 307-310.	2.6	12
128	Defect formation in thin polyelectrolyte films on polycrystalline NiTi substrates. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 436-445.	1.5	12
129	In situ characterization of backstress effects on the austenite-to-bainite phase transformation. Scripta Materialia, 2012, 67, 368-371.	2.6	12
130	One-way and two-way shape memory effect in ferromagnetic NiFeGaCo single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 465-470.	2.6	12
131	Influence of surface pre-treatments on the high-cycle fatigue behavior of Ti–6Al–4V – From anodizing to laser-assisted techniques. International Journal of Fatigue, 2016, 91, 195-203.	2.8	12
132	Comparison of the monotonic and cyclic mechanical properties of ultrafine-grained low carbon steels processed by continuous and conventional equal channel angular pressing. Materials & Design, 2013, 47, 138-142.	5.1	11
133	Joining with electrochemical support (ECUF): Cold pressure welding of copper. Journal of Materials Processing Technology, 2014, 214, 2179-2187.	3.1	11
134	Hydrogen-enhanced orientation dependence of stress relaxation and strain-aging in Hadfield steel single crystals. Scripta Materialia, 2017, 136, 101-105.	2.6	11
135	Influence of coatings on degradation and osseointegration of open porous Mg scaffolds in vivo. Materialia, 2020, 14, 100949.	1.3	11
136	Plastic deformation: a major factor in hydrogen embrittlement of low alloy steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 117, L11-L15.	2.6	10
137	Evolution of transformation plasticity in austenite-to-bainite phase transformation: A multi parameter problem. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 541, 73-80.	2.6	9
138	Surface strain evolution of ultrafine-grained aluminum alloy laminates under tension – Microscale plastic instabilities and the Portevin–Le Chatelier effect. Scripta Materialia, 2013, 68, 809-812.	2.6	9
139	Property Optimization for TWIP Steels – Effect of Pre-deformation Temperature on Fatigue Properties. Materials Today: Proceedings, 2015, 2, S681-S685.	0.9	9
140	Wear behaviour of thermally oxidised tool surfaces as low-friction separation layers for dry sheet metal forming. Wear, 2017, 376-377, 1789-1803.	1.5	8
141	Dependence of functional degradation on crystallographic orientation in NiTi shape memory alloys aged under stress. Journal of Alloys and Compounds, 2013, 577, S219-S221.	2.8	7
142	Environmental effects on the dislocation arrangement of fatigued low alloy steel. Scripta Metallurgica Et Materialia, 1990, 24, 123-127.	1.0	6
143	Joining of blanks by cold pressure welding: Incremental rolling and strategies for surface activation and heat treatment. Materialwissenschaft Und Werkstofftechnik, 2019, 50, 924-939.	0.5	6
144	Temperature dependence of martensite variant reorientation in stress-induced martensite aged Ni49Fe18Ga27Co6 single crystals. Scripta Materialia, 2021, 194, 113618.	2.6	6

#	Article	IF	CITATIONS
145	Modelling thermomechanical fatigue life. Materials at High Temperatures, 2002, 19, 9-17.	0.5	4
146	Crack growth behavior of low-alloy bainitic 51CrV4 steel. Procedia Engineering, 2010, 2, 1373-1382.	1.2	4
147	Deformation behaviour of bovine cancellous bone. Technology and Health Care, 2006, 14, 549-556.	0.5	3
148	Environmental effects on the X-ray line profiles of fatigued low alloy steel. Scripta Metallurgica Et Materialia, 1990, 24, 353-358.	1.0	2
149	Effect of SiC-Reinforcement on Thermo-mechanical Fatigue of a Dispersion-Strengthened High-Temperature Aluminum Alloy. , 2000, , 167-185.		2
150	<i>In-Situ</i> Characterization of Stress-Induced Martensite and Related Magnetic Domain Structure in Ni-Fe-Ga Ferromagnetic Shape Memory Alloy Single Crystals. , 0, , 246-254.		0
151	In-vivo Vergleich der Osseointegration und des Degradationsverhaltens der Magnesium-Scaffolds La2 und LAE442. , 2019, 28, .		0