Jeong Sook Ha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11051325/publications.pdf

Version: 2024-02-01

71004 134545 7,575 62 43 62 citations h-index g-index papers 62 62 62 11393 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chemical Engineering Journal, 2022, 427, 130858.	6.6	27
2	A stretchable array of high-performance electrochromic devices for displaying skin-attached multi-sensor signals. Chemical Engineering Journal, 2022, 429, 132289.	6.6	20
3	All vanadium-based Li-ion hybrid supercapacitor with enhanced electrochemical performance via prelithiation. Journal of Alloys and Compounds, 2022, 914, 165288.	2.8	9
4	High performance flexible micro-supercapacitor for powering a vertically integrated skin-attachable strain sensor on a bio-inspired adhesive. Nano Energy, 2021, 83, 105837.	8.2	48
5	Stretchable, self-healable, and photodegradable supercapacitor based on a polyelectrolyte crosslinked via dynamic host-guest interaction. Chemical Engineering Journal, 2021, 422, 130121.	6.6	28
6	Highly sensitive pressure and temperature sensors fabricated with poly(3-hexylthiophene-2,5-diyl)-coated elastic carbon foam for bio-signal monitoring. Chemical Engineering Journal, 2021, 423, 130197.	6.6	24
7	A highly conductive and electromechanically self-healable gold nanosheet electrode for stretchable electronics. Chemical Engineering Journal, 2020, 384, 123336.	6.6	28
8	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	11.1	236
9	Paperâ€Like, Thin, Foldable, and Selfâ€Healable Electronics Based on PVA/CNC Nanocomposite Film. Advanced Functional Materials, 2019, 29, 1905968.	7.8	102
10	Dynamically Stretchable Supercapacitor for Powering an Integrated Biosensor in an All-in-One Textile System. ACS Nano, 2019, 13, 10469-10480.	7.3	116
11	Facile fabrication of a fully biodegradable and stretchable serpentine-shaped wire supercapacitor. Chemical Engineering Journal, 2019, 366, 62-71.	6.6	84
12	A Flexible Loudspeaker Using the Movement of Liquid Metal Induced by Electrochemically Controlled Interfacial Tension. Small, 2019, 15, e1905263.	5 . 2	23
13	Stretchable, Skin-Attachable Electronics with Integrated Energy Storage Devices for Biosignal Monitoring. Accounts of Chemical Research, 2019, 52, 91-99.	7.6	78
14	Skin-Like, Dynamically Stretchable, Planar Supercapacitors with Buckled Carbon Nanotube/Mn–Mo Mixed Oxide Electrodes and Air-Stable Organic Electrolyte. ACS Nano, 2019, 13, 855-866.	7.3	81
15	High performance wire-type supercapacitor with Ppy/CNT-ionic liquid/AuNP/carbon fiber electrode and ionic liquid based electrolyte. Carbon, 2019, 144, 639-648.	5.4	57
16	Highâ€Sensitivity, Skinâ€Attachable, and Stretchable Array of Thermoâ€Responsive Suspended Gate Fieldâ€Effect Transistors with Thermochromic Display. Advanced Functional Materials, 2019, 29, 1807679.	7.8	47
17	Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Applied Surface Science, 2019, 471, 300-308.	3.1	44
18	Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection. ACS Applied Materials & Detection and pH Detection. ACS Applied Materials & Detection and Detection accordingly.	4.0	314

#	Article	IF	Citations
19	Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive. ACS Applied Materials & Interfaces, 2018, 10, 7263-7270.	4.0	165
20	Microporous Polypyrroleâ€Coated Graphene Foam for Highâ€Performance Multifunctional Sensors and Flexible Supercapacitors. Advanced Functional Materials, 2018, 28, 1707013.	7.8	195
21	Stretchable array of high-performance micro-supercapacitors charged with solar cells for wireless powering of an integrated strain sensor. Nano Energy, 2018, 49, 644-654.	8.2	146
22	Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. Neuron, 2017, 93, 509-521.e3.	3.8	323
23	A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays. Nanoscale, 2017, 9, 7631-7640.	2.8	160
24	A Patterned Graphene/ZnO UV Sensor Driven by Integrated Asymmetric Microâ€Supercapacitors on a Liquid Metal Patterned Foldable Paper. Advanced Functional Materials, 2017, 27, 1700135.	7.8	114
25	Fully Biodegradable Microsupercapacitor for Power Storage in Transient Electronics. Advanced Energy Materials, 2017, 7, 1700157.	10.2	196
26	Flexible, water-proof, wire-type supercapacitors integrated with wire-type UV/NO2 sensors on textiles. Nano Energy, 2017, 35, 199-206.	8.2	52
27	A skin-attachable, stretchable integrated system based on liquid GalnSn for wireless human motion monitoring with multi-site sensing capabilities. NPG Asia Materials, 2017, 9, e443-e443.	3.8	223
28	Polyurethane foam coated with a multi-walled carbon nanotube/polyaniline nanocomposite for a skin-like stretchable array of multi-functional sensors. NPG Asia Materials, 2017, 9, e448-e448.	3.8	90
29	Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain, 2017, 158, 2108-2116.	2.0	93
30	High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive. Nanoscale, 2016, 8, 15611-15620.	2.8	44
31	Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin. Advanced Materials, 2016, 28, 930-935.	11.1	364
32	Encapsulated, High-Performance, Stretchable Array of Stacked Planar Micro-Supercapacitors as Waterproof Wearable Energy Storage Devices. ACS Applied Materials & Interfaces, 2016, 8, 16016-16025.	4.0	112
33	Bodyâ€Attachable and Stretchable Multisensors Integrated with Wirelessly Rechargeable Energy Storage Devices. Advanced Materials, 2016, 28, 748-756.	11.1	129
34	Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy, 2016, 19, 401-414.	8.2	179
35	Highly Stretchable and Sensitive Strain Sensors Using Fragmentized Graphene Foam. Advanced Functional Materials, 2015, 25, 4228-4236.	7.8	560
36	Air-Stable, High-Performance, Flexible Microsupercapacitor with Patterned Ionogel Electrolyte. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4608-4615.	4.0	83

#	Article	lF	CITATIONS
37	Fabrication of patterned flexible graphene devices via facile direct transfer of as-grown bi-layer graphene. Applied Surface Science, 2015, 328, 235-240.	3.1	10
38	Stretchable Loudspeaker using Liquid Metal Microchannel. Scientific Reports, 2015, 5, 11695.	1.6	81
39	Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte. Energy and Environmental Science, 2015, 8, 1764-1774.	15.6	138
40	Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. ACS Nano, 2015, 9, 9974-9985.	7.3	361
41	Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nature Biotechnology, 2015, 33, 1280-1286.	9.4	658
42	Fabrication of flexible micro-supercapacitor array with patterned graphene foam/MWNT-COOH/MnO electrodes and its application. Carbon, 2015, 81, 29-37.	5.4	79
43	Fabrication of Stretchable Singleâ€Walled Carbon Nanotube Logic Devices. Small, 2014, 10, 2910-2917.	5.2	9
44	Design and Fabrication of Novel Stretchable Device Arrays on a Deformable Polymer Substrate with Embedded Liquidâ€Metal Interconnections. Advanced Materials, 2014, 26, 6580-6586.	11.1	88
45	Biaxially Stretchable, Integrated Array of High Performance Microsupercapacitors. ACS Nano, 2014, 8, 11639-11650.	7. 3	143
46	Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V ₂ O ₅ nanowires integrated with a SnO ₂ nanowire UV sensor. Nanoscale, 2014, 6, 12034-12041.	2.8	89
47	All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes. Carbon, 2014, 79, 156-164.	5.4	151
48	High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnO _x nanocomposite electrodes. Nanoscale, 2014, 6, 9655-9664.	2.8	71
49	High-Density, Stretchable, All-Solid-State Microsupercapacitor Arrays. ACS Nano, 2014, 8, 8844-8855.	7.3	96
50	Fabrication of a Stretchable Solid-State Micro-Supercapacitor Array. ACS Nano, 2013, 7, 7975-7982.	7.3	244
51	Current generation of vertically aligned ZnO nanowires by photo-induced deformation of a matrix polymer. Journal of Materials Chemistry C, 2013, 1, 7191.	2.7	5
52	The effects of magnetic field on pulsed laser deposition of Mg-doped ZnO thin films. Applied Surface Science, 2012, 258, 8542-8547.	3.1	8
53	SnO ₂ Nanowire Logic Devices on Deformable Nonplanar Substrates. ACS Nano, 2011, 5, 10009-10016.	7. 3	31
54	Stretchable Fieldâ€Effectâ€Transistor Array of Suspended SnO ₂ Nanowires. Small, 2011, 7, 1181-1185.	5.2	71

#	Article	IF	CITATIONS
55	Micromechanics and Advanced Designs for Curved Photodetector Arrays in Hemispherical Electronicâ€Eye Cameras. Small, 2010, 6, 851-856.	5.2	94
56	Degradation pattern of SnO ₂ nanowire field effect transistors. Nanotechnology, 2010, 21, 485201.	1.3	8
57	Experimental and modeling studies of imaging with curvilinear electronic eye cameras. Optics Express, 2010, 18, 27346.	1.7	9
58	Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts. Applied Physics Letters, 2010, 96, .	1.5	52
59	Curvilinear Electronics Formed Using Silicon Membrane Circuits and Elastomeric Transfer Elements. Small, 2009, 5, 2703-2709.	5.2	233
60	Highly ordered nanoporous thin films by blending of PStâ€ <i>b</i> à€PMMA block copolymers and PEO additives as structure directing agents. Journal of Polymer Science Part A, 2008, 46, 8041-8048.	2.5	13
61	Origin of the slow photoresponse in an individual sol-gel synthesized ZnO nanowire. Applied Physics Letters, 2007, 90, 153106.	1.5	166
62	Controlled Ordering of Block Copolymer Thin Films by the Addition of Hydrophilic Nanoparticles. Macromolecules, 2007, 40, 8119-8124.	2.2	73