Peng Yue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11050796/publications.pdf

Version: 2024-02-01

15 papers	3,679 citations	15 h-index	996975 15 g-index
15	15	15	7270
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Expression Profile of BCL-2, BCL-XL, and MCL-1 Predicts Pharmacological Response to the BCL-2 Selective Antagonist Venetoclax in Multiple Myeloma Models. Molecular Cancer Therapeutics, 2016, 15, 1132-1144.	4.1	231
2	Bcl-2/Bcl-xL Inhibition Increases the Efficacy of MEK Inhibition Alone and in Combination with PI3 Kinase Inhibition in Lung and Pancreatic Tumor Models. Molecular Cancer Therapeutics, 2013, 12, 853-864.	4.1	67
3	miR-221/222 Targets Adiponectin Receptor 1 to Promote the Epithelial-to-Mesenchymal Transition in Breast Cancer. PLoS ONE, 2013, 8, e66502.	2.5	111
4	Navitoclax (ABT-263) Reduces Bcl-xL–Mediated Chemoresistance in Ovarian Cancer Models. Molecular Cancer Therapeutics, 2012, 11, 1026-1035.	4.1	94
5	Navitoclax Enhances the Efficacy of Taxanes in Non–Small Cell Lung Cancer Models. Clinical Cancer Research, 2011, 17, 1394-1404.	7.0	80
6	CD40 Pathway Activation Status Predicts Response to CD40 Therapy in Diffuse Large B Cell Lymphoma. Science Translational Medicine, 2011, 3, 74ra22.	12.4	34
7	TRPS1 Targeting by miR-221/222 Promotes the Epithelial-to-Mesenchymal Transition in Breast Cancer. Science Signaling, 2011, 4, ra41.	3.6	252
8	Inferring the functional effects of mutation through clusters of mutations in homologous proteins. Human Mutation, 2010, 31, 264-271.	2.5	48
9	Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 2010, 466, 869-873.	27.8	1,189
10	Somatic Mutations in p85α Promote Tumorigenesis through Class IA PI3K Activation. Cancer Cell, 2009, 16, 463-474.	16.8	291
11	Analytical methods for inferring functional effects of single base pair substitutions in human cancers. Human Genetics, 2009, 126, 481-498.	3.8	19
12	Therapeutic potential of an anti-CD79b antibody–drug conjugate, anti–CD79b-vc-MMAE, for the treatment of non-Hodgkin lymphoma. Blood, 2009, 114, 2721-2729.	1.4	205
13	Identification and Analysis of Deleterious Human SNPs. Journal of Molecular Biology, 2006, 356, 1263-1274.	4.2	237
14	SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinformatics, 2006, 7, 166.	2.6	383
15	Loss of Protein Structure Stability as a Major Causative Factor in Monogenic Disease. Journal of Molecular Biology, 2005, 353, 459-473.	4.2	438