Laurent Falk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11050127/publications.pdf Version: 2024-02-01

LALIDENT FALK

#	Article	IF	CITATIONS
1	Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions. Energy, 2021, 214, 118989.	8.8	45
2	Sustainability analysis for the design of distributed energy systems: A multi-objective optimization approach. Applied Energy, 2021, 290, 116746.	10.1	35
3	Techno-Economic and Carbon Footprint Analyses of a Coke Oven Gas Reuse Process for Methanol Production. Processes, 2021, 9, 1042.	2.8	5
4	Optimal Design of Energy Systems in Isolated Zones Using Sustainability Indicators. A Case Study in the Colombian Amazon. , 2021, , .		0
5	Trends in design of distributed energy systems using hydrogen as energy vector: A systematic literature review. International Journal of Hydrogen Energy, 2019, 44, 9486-9504.	7.1	119
6	Influence of reagents choice (buffer, acid and inert salt) on triiodide production in the Villermaux–Dushman method applied to a stirred vessel. Chemical Engineering Research and Design, 2018, 136, 25-31.	5.6	23
7	A review of thermochemical processes and technologies to use steelworks off-gases. Renewable and Sustainable Energy Reviews, 2017, 74, 809-823.	16.4	102
8	Kinetics of Methanol Synthesis from Carbon Dioxide Hydrogenation over Copper–Zinc Oxide Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 13133-13145.	3.7	84
9	Application of Raman Spectroscopy to Characterization of Residence Time Distribution and Online Monitoring of a Pilotâ€6cale Tubular Reactor for Acrylic Acid Solution Polymerization. Macromolecular Reaction Engineering, 2016, 10, 406-414.	1.5	12
10	Continuous Pilot‧cale Tubular Reactor for Acrylic Acid Polymerization in Solution Designed Using Lab‧cale Rheoâ€Raman data. Macromolecular Reaction Engineering, 2016, 10, 354-363.	1.5	6
11	Modular, Flexible, and Continuous Plant for Radical Polymerization in Aqueous Solution. Macromolecular Reaction Engineering, 2016, 10, 339-353.	1.5	21
12	Continuous Pilot-Scale Tubular Reactor for Acrylic Acid Polymerization in Solution Designed Using Lab-Scale Rheo-Raman data. Macromolecular Reaction Engineering, 2016, 10, 354-363.	1.5	1
13	Impact of reducing the channel diameter on heterogeneous gas reactions in an isothermal monolith. Chemical Engineering and Processing: Process Intensification, 2015, 95, 317-326.	3.6	12
14	Preliminary design and simulation of a microstructured reactor for production of synthesis gas by steam methane reforming. Chemical Engineering Research and Design, 2014, 92, 1728-1739.	5.6	16
15	Methanol synthesis from CO2 and H2 in multi-tubular fixed-bed reactor and multi-tubular reactor filled with monoliths. Chemical Engineering Research and Design, 2014, 92, 2598-2608.	5.6	45
16	Local and global process intensification. Chemical Engineering and Processing: Process Intensification, 2014, 84, 1-13.	3.6	50
17	Contribution of Raman Spectroscopy to In Situ Monitoring of a Highâ€Impact Polystyrene Process. Chemical Engineering and Technology, 2014, 37, 275-282.	1.5	11
18	Influence of the plate-type continuous micro-separator dimensions on the efficiency of demulsification of oil-in-water emulsion. Chemical Engineering Research and Design, 2014, 92, 2758-2769.	5.6	17

LAURENT FALK

#	Article	IF	CITATIONS
19	In situ monitoring of acrylic acid polymerization in aqueous solution using rheo-Raman technique. Experimental investigation and theoretical modelling. Chemical Engineering Science, 2014, 106, 242-252.	3.8	15
20	Structured Multi-Scale Process Systems Design and Engineering - The Role of Microreactor Technology in Chemical Process Design. , 2013, , 1-21.		3
21	Rheo-Raman: A Promising Technique for In Situ Monitoring of Polymerization Reactions in Solution. Industrial & Engineering Chemistry Research, 2012, 51, 16151-16156.	3.7	19
22	Intensification of heat transfer during evaporation of a falling liquid film in vertical microchannels—Experimental investigations. Chemical Engineering Science, 2012, 75, 152-166.	3.8	11
23	Determination of kinetic constants of a photocatalytic reaction in micro-channel reactors in the presence of mass-transfer limitation and axial dispersion. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 223, 202-211.	3.9	64
24	Villermaux–Dushman protocol for experimental characterization of micromixers. Chemical Engineering and Processing: Process Intensification, 2011, 50, 979-990.	3.6	143
25	Intensification of the G/L absorption in microstructured falling film application to the treatment of chlorinated VOC's. Part III: Influence of gas thickness channel on mass transfer. Chemical Engineering Science, 2011, 66, 5989-6001.	3.8	8
26	Capability of a falling film microstructured contactor for the separation of binary mixtures. Chemical Engineering Journal, 2011, 167, 455-467.	12.7	11
27	Intensification of G/L absorption in microstructured falling film. Application to the treatment of chlorinated VOC's - part II: Modeling and geometric optimization. Chemical Engineering Science, 2011, 66, 2475-2490.	3.8	13
28	Falling liquid film stability in microgas/liquid absorption. Chemical Engineering and Processing: Process Intensification, 2010, 49, 953-957.	3.6	21
29	Rapid design of channel multi-scale networks with minimum flow maldistribution. Chemical Engineering and Processing: Process Intensification, 2009, 48, 723-733.	3.6	55
30	Characterization and modelling of diffusion and reaction of low molecular weight reactants in molten polymer. Polymer, 2007, 48, 6902-6912.	3.8	4
31	Diffusion of liquids in molten polymers: Mutual diffusion coefficient dependence on liquid miscibility and polymer molar mass. Polymer, 2006, 47, 5080-5089.	3.8	11
32	Numerical simulation of the mixing of passive and reactive scalars in two-dimensional flows dominated by coherent vortices. Chemical Engineering Science, 2000, 55, 4255-4269.	3.8	13
33	Characterisation of micromixing efficiency by the iodide–iodate reaction system. Part I: experimental procedure. Chemical Engineering Science, 2000, 55, 4233-4243.	3.8	263
34	Characterisation of micromixing efficiency by the iodide–iodate reaction system. Part II: kinetic study. Chemical Engineering Science, 2000, 55, 4245-4253.	3.8	162
35	Determination of local energy dissipation rates in impinging jets by a chemical reaction method. Chemical Engineering Journal, 1999, 72, 125-138.	12.7	33
36	Micromixing efficiency of a novel sliding-surface mixing device. AICHE Journal, 1999, 45, 2203-2213.	3.6	42

#	Article	IF	CITATIONS
37	Extension of a chemical method for the study of micromixing process in viscous media. Chemical Engineering Science, 1997, 52, 4649-4658.	3.8	37
38	A generalized mixing model for initial contacting of reactive fluids. Chemical Engineering Science, 1994, 49, 5127-5140.	3.8	123