Jean Bousquet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11049485/publications.pdf

Version: 2024-02-01

132	8,225	46	84
papers	citations	h-index	g-index
138	138	138	7924
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Genetic influence on components of wood density variation in white spruce. Forestry, 2022, 95, 153-165.	1.2	8
2	Breeding for adaptation to climate change: genomic selection for drought response in a white spruce multiâ€site polycross test. Evolutionary Applications, 2022, 15, 383-402.	1.5	14
3	Multi-trait selection for improved solid wood physical and flexural properties in white spruce. Forestry, 2022, 95, 492-503.	1.2	1
4	Metadata analysis indicates biased estimation of genetic parameters and gains using conventional pedigree information instead of genomic-based approaches in tree breeding. Scientific Reports, 2022, 12, 3933.	1.6	6
5	Spruce gigaâ€genomes: structurally similar yet distinctive with differentially expanding gene families and rapidly evolving genes. Plant Journal, 2022, 111, 1469-1485.	2.8	17
6	Connecting treeâ€ring phenotypes, genetic associations and transcriptomics to decipher the genomic architecture of drought adaptation in a widespread conifer. Molecular Ecology, 2021, 30, 3898-3917.	2.0	35
7	SNP-based analysis reveals unexpected features of genetic diversity, parental contributions and pollen contamination in a white spruce breeding program. Scientific Reports, 2021, 11, 4990.	1.6	11
8	Combining QTL Mapping and Transcriptomics to Decipher the Genetic Architecture of Phenolic Compounds Metabolism in the Conifer White Spruce. Frontiers in Plant Science, 2021, 12, 675108.	1.7	7
9	Spruce Population Genomics. Population Genomics, 2021, , 1.	0.2	2
10	Multiâ€trait genomic selection for weevil resistance, growth, and wood quality in Norway spruce. Evolutionary Applications, 2020, 13, 76-94.	1.5	78
11	Complete Chloroplast Genome Sequence of a Black Spruce (Picea mariana) from Eastern Canada. Microbiology Resource Announcements, 2020, 9, .	0.3	4
12	Genomic selection for resistance to spruce budworm in white spruce and relationships with growth and wood quality traits. Evolutionary Applications, 2020, 13, 2704-2722.	1.5	19
13	Complete Mitochondrial Genome of a Gymnosperm, Sitka Spruce (Picea sitchensis), Indicates a Complex Physical Structure. Genome Biology and Evolution, 2020, 12, 1174-1179.	1.1	49
14	Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. New Phytologist, 2020, 227, 427-439.	3.5	66
15	Genomic prediction for hastening and improving efficiency of forward selection in conifer polycross mating designs: an example from white spruce. Heredity, 2020, 124, 562-578.	1.2	38
16	Complete Chloroplast Genome Sequence of an Engelmann Spruce (<i>Picea engelmannii</i> , Genotype) Tj ETo	Qq0 _{0.3} 0 rg	BT /Overlock 1
17	White spruce wood quality for lumber products: priority traits and their enhancement through tree improvement. Forestry, 2019, , .	1.2	10
18	The large repertoire of conifer NLR resistance genes includes drought responsive and highly diversified RNLs. Scientific Reports, 2019, 9, 11614.	1.6	49

#	Article	IF	Citations
19	Analysis of genetic diversity of lychee (Litchi chinensis Sonn.) and wild forest relatives in the Sapindaceae from Vietnam using microsatellites. Genetic Resources and Crop Evolution, 2019, 66, 1653-1669.	0.8	3
20	Complete Chloroplast Genome Sequence of a White Spruce (Picea glauca, Genotype WS77111) from Eastern Canada. Microbiology Resource Announcements, 2019, 8, .	0.3	7
21	ntEdit: scalable genome sequence polishing. Bioinformatics, 2019, 35, 4430-4432.	1.8	67
22	Thermal acclimation of photosynthesis and respiration of southern and northern white spruce seed sources tested along a regional climatic gradient indicates limited potential to cope with temperature warming. Annals of Botany, 2018, 121, 443-457.	1.4	44
23	Expansion of the dehydrin gene family in the Pinaceae is associated with considerable structural diversity and drought-responsive expression. Tree Physiology, 2018, 38, 442-456.	1.4	30
24	A catalog of annotated high-confidence SNPs from exome capture and sequencing reveals highly polymorphic genes in Norway spruce (Picea abies). BMC Genomics, 2018, 19, 942.	1.2	22
25	Association genetics of acetophenone defence against spruce budworm in mature white spruce. BMC Plant Biology, 2018, 18, 231.	1.6	18
26	A highâ€resolution reference genetic map positioning 8.8ÂK genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. Plant Journal, 2017, 90, 189-203.	2.8	47
27	Factors affecting the accuracy of genomic selection for growth and wood quality traits in an advanced-breeding population of black spruce (Picea mariana). BMC Genomics, 2017, 18, 335.	1.2	92
28	Gene copy number variations in adaptive evolution: The genomic distribution of gene copy number variations revealed by genetic mapping and their adaptive role in an undomesticated species, white spruce (<i>Picea glauca</i>). Molecular Ecology, 2017, 26, 5989-6001.	2.0	25
29	Asymmetry matters: A genomic assessment of directional biases in gene flow between hybridizing spruces. Ecology and Evolution, 2017, 7, 3883-3893.	0.8	14
30	Development of a Traceability System Based on a SNP Array for Large-Scale Production of High-Value White Spruce (Picea glauca). Frontiers in Plant Science, 2017, 8, 1264.	1.7	14
31	Ecophysiology and Growth of White Spruce Seedlings from Various Seed Sources along a Climatic Gradient Support the Need for Assisted Migration. Frontiers in Plant Science, 2017, 8, 2214.	1.7	35
32	Genetic Adaptation vs. Ecophysiological Plasticity of Photosynthetic-Related Traits in Young Picea glauca Trees along a Regional Climatic Gradient. Frontiers in Plant Science, 2016, 7, 48.	1.7	48
33	Morpho-Physiological Variation of White Spruce Seedlings from Various Seed Sources and Implications for Deployment under Climate Change. Frontiers in Plant Science, 2016, 7, 1450.	1.7	9
34	Development of highly reliable in silico SNP resource and genotyping assay from exome capture and sequencing: an example from black spruce (<i>Picea mariana</i>). Molecular Ecology Resources, 2016, 16, 588-598.	2.2	32
35	Joint inferences from cytoplasmic <scp>DNA</scp> and fossil data provide evidence for glacial vicariance and contrasted postâ€glacial dynamics in tamarack, a transcontinental conifer. Journal of Biogeography, 2016, 43, 1227-1241.	1.4	10
36	Genetic architecture of wood properties based on association analysis and coâ€expression networks in white spruce. New Phytologist, 2016, 210, 240-255.	3.5	43

#	Article	IF	CITATIONS
37	Organellar Genomes of White Spruce (<i>Picea glauca</i>): Assembly and Annotation. Genome Biology and Evolution, 2016, 8, 29-41.	1.1	46
38	Tracking the progression of speciation: variable patterns of introgression across the genome provide insights on the species delimitation between progenitor–derivative spruces (<i>Picea mariana</i> ×) Tj ETÇ)q0 0.0 rgB	T / 9ø erlock 10
39	Improved white spruce (<i>Picea glauca</i>) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant Journal, 2015, 83, 189-212.	2.8	200
40	Integrating phylogeography and paleoecology to investigate the origin and dynamics of hybrid zones: insights from two widespread <scp>N</scp> orth <scp>A</scp> merican firs. Molecular Ecology, 2015, 24, 2856-2870.	2.0	30
41	Less Pollen-Mediated Gene Flow for More Signatures of Glacial Lineages: Congruent Evidence from Balsam Fir cpDNA and mtDNA for Multiple Refugia in Eastern and Central North America. PLoS ONE, 2015, 10, e0122815.	1.1	14
42	Variations in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle. Frontiers in Plant Science, 2015, 6, 342.	1.7	44
43	Inferring and outlining past population declines with linked microsatellites: a case study in two spruce species. Tree Genetics and Genomes, $2015,11,1.$	0.6	4
44	Family Variation in the Morphology and Physiology of White Spruce (<i>Picea glauca</i>) Seedlings in Response to Elevated CO ₂ and Temperature. Journal of Sustainable Forestry, 2015, 34, 169-198.	0.6	7
45	Fine-scale geographic variation in photosynthetic-related traits of <i>Picea glauca </i> seedlings indicates local adaptation to climate. Tree Physiology, 2015, 35, 864-878.	1.4	16
46	From genotypes to phenotypes: expression levels of genes encompassing adaptive SNPs in black spruce. Plant Cell Reports, 2015, 34, 2111-2125.	2.8	5
47	Genetic Adaptation to Climate in White Spruce Involves Small to Moderate Allele Frequency Shifts in Functionally Diverse Genes. Genome Biology and Evolution, 2015, 7, 3269-3285.	1.1	47
48	A Picea abies Linkage Map Based on SNP Markers Identifies QTLs for Four Aspects of Resistance to Heterobasidion parviporum Infection. PLoS ONE, 2014, 9, e101049.	1.1	52
49	The bud break process and its variation among local populations of boreal black spruce. Frontiers in Plant Science, 2014, 5, 574.	1.7	40
50	Genomic selection accuracies within and between environments and small breeding groups in white spruce. BMC Genomics, 2014, 15, 1048.	1.2	93
51	The phylogeography of Eurasian Fraxinus species reveals ancient transcontinental reticulation. Molecular Phylogenetics and Evolution, 2014, 77, 223-237.	1.2	15
52	Insights into Conifer Giga-Genomes. Plant Physiology, 2014, 166, 1724-1732.	2.3	164
53	Relationship between genome and epigenome - challenges and requirements for future research. BMC Genomics, 2014, 15, 487.	1.2	24
54	Rates of spontaneous hybridization and hybrid recruitment in co-existing exotic and native mature larch populations. Tree Genetics and Genomes, 2014, 10, 965-975.	0.6	12

#	Article	IF	Citations
55	Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size. BMC Plant Biology, 2014, 14, 95.	1.6	46
56	Evolution of an Ancient Microsatellite Hotspot in the Conifer Mitochondrial Genome and Comparison with Other Plants. Journal of Molecular Evolution, 2013, 76, 146-157.	0.8	16
57	The genomic architecture and association genetics of adaptive characters using a candidate SNP approach in boreal black spruce. BMC Genomics, 2013, 14, 368.	1.2	41
58	The Norway spruce genome sequence and conifer genome evolution. Nature, 2013, 497, 579-584.	13.7	1,303
59	Assembling the 20 Gb white spruce (<i>Picea glauca</i>) genome from whole-genome shotgun sequencing data. Bioinformatics, 2013, 29, 1492-1497.	1.8	356
60	The Landscape of Nucleotide Polymorphism among 13,500 Genes of the Conifer Picea glauca, Relationships with Functions, and Comparison with Medicago truncatula. Genome Biology and Evolution, 2013, 5, 1910-1925.	1.1	33
61	Development of highâ€density <scp>SNP</scp> genotyping arrays for white spruce (<i><scp>P</scp>icea) Tj ET 2013, 13, 324-336.</i>	Qq1 1 0.7 2.2	84314 rgBT 78
62	The Phylogeny and Biogeographic History of Ashes (Fraxinus, Oleaceae) Highlight the Roles of Migration and Vicariance in the Diversification of Temperate Trees. PLoS ONE, 2013, 8, e80431.	1.1	52
63	When exotic poplars and native Populus balsamifera L. meet on the Canadian Prairies: Spontaneous hybridization and establishment of interspecific hybrids. Forest Ecology and Management, 2012, 285, 142-152.	1.4	21
64	Phylogeny, diversification rates and species boundaries of Mesoamerican firs (Abies, Pinaceae) in a genus-wide context. Molecular Phylogenetics and Evolution, 2012, 62, 263-274.	1,2	65
65	A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. BMC Biology, 2012, 10, 84.	1.7	97
66	Understanding the complexity of IgE-related phenotypes from childhood to young adulthood: A Mechanisms of the Development of Allergy (MeDALL) Seminar. Journal of Allergy and Clinical Immunology, 2012, 129, 943-954.e4.	1.5	68
67	Largeâ€scale asymmetric introgression of cytoplasmic <scp>DNA</scp> reveals Holocene range displacement in a North American boreal pine complex. Ecology and Evolution, 2012, 2, 1853-1866.	0.8	28
68	Disentangling the Roles of History and Local Selection in Shaping Clinal Variation of Allele Frequencies and Gene Expression in Norway Spruce (<i>Picea abies</i>). Genetics, 2012, 191, 865-881.	1,2	195
69	Scanning SNPs from a large set of expressed genes to assess the impact of artificial selection on the undomesticated genetic diversity of white spruce. Evolutionary Applications, 2012, 5, 641-656.	1.5	23
70	Parallel and lineageâ€specific molecular adaptation to climate in boreal black spruce. Molecular Ecology, 2012, 21, 4270-4286.	2.0	61
71	Deciduous Trees and the Application of Universal DNA Barcodes: A Case Study on the Circumpolar Fraxinus. PLoS ONE, 2012, 7, e34089.	1.1	40
72	Chloroplast DNA polymorphisms in eastern hemlock: range-wide genogeographic analyses and implications for gene conservation. Canadian Journal of Forest Research, 2011, 41, 1047-1059.	0.8	12

#	Article	IF	Citations
73	Association Genetics of Wood Physical Traits in the Conifer White Spruce and Relationships With Gene Expression. Genetics, 2011, 188, 197-214.	1.2	131
74	Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce. Molecular Ecology, 2011, 20, 1702-1716.	2.0	135
75	Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genetics and Genomes, 2011, 7, 469-484.	0.6	83
76	Range-wide chloroplast and mitochondrial DNA imprints reveal multiple lineages and complex biogeographic history for Douglas-fir. Tree Genetics and Genomes, 2011, 7, 1025-1040.	0.6	26
77	Gene mapping in white spruce (P. glauca): QTL and association studies integrating population and expression data. BMC Proceedings, $2011, 5, .$	1.8	2
78	QTL mapping in white spruce: gene maps and genomic regions underlying adaptive traits across pedigrees, years and environments. BMC Genomics, 2011, 12, 145.	1.2	110
79	A White Spruce Gene Catalog for Conifer Genome Analyses Â. Plant Physiology, 2011, 157, 14-28.	2.3	143
80	Molecular Evolution of Regulatory Genes in Spruces from Different Species and Continents: Heterogeneous Patterns of Linkage Disequilibrium and Selection but Correlated Recent Demographic Changes. Journal of Molecular Evolution, 2010, 70, 371-386.	0.8	40
81	TreeSNPs: a laboratory information management system (LIMS) dedicated to SNP discovery in trees. Tree Genetics and Genomes, 2010, 6, 435-438.	0.6	10
82	From glacial refugia to modern populations: new assemblages of organelle genomes generated by differential cytoplasmic gene flow in transcontinental black spruce. Molecular Ecology, 2010, 19, 5265-5280.	2.0	48
83	Phylogeographic structure of jack pine (<i>Pinus banksiana</i> ; Pinaceae) supports the existence of a coastal glacial refugium in northeastern North America. American Journal of Botany, 2010, 97, 1903-1912.	0.8	43
84	Complex patterns of hybridization between exotic and native North American poplar species. American Journal of Botany, 2010, 97, 1688-1697.	0.8	41
85	A metapopulation model for the introgression from genetically modified plants into their wild relatives. Evolutionary Applications, 2009, 2, 160-171.	1.5	22
86	Inferring the past from the present phylogeographic structure of North American forest trees: seeing the forest for the genes. Canadian Journal of Forest Research, 2009, 39, 286-307.	0.8	120
87	Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia. Molecular Ecology, 2008, 17, 2463-2475.	2.0	92
88	Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus <i>Abies</i> (Pinaceae) in southern México and Guatemala. Molecular Ecology, 2008, 17, 2476-2490.	2.0	89
89	Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Molecular Ecology, 2008, 17, 3599-3613.	2.0	230
90	Enhancing genetic mapping of complex genomes through the design of highly-multiplexed SNP arrays: application to the large and unsequenced genomes of white spruce and black spruce. BMC Genomics, 2008, 9, 21.	1.2	116

#	Article	IF	Citations
91	Spruce., 2007,, 93-114.		5
92	Glacial vicariance in Eurasia: mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evolutionary Biology, 2007, 7, 233.	3.2	118
93	Ectomycorrhizal fungal communities of nursery-inoculated seedlings outplanted on clear-cut sites in northern Alberta. Canadian Journal of Forest Research, 2006, 36, 1684-1694.	0.8	30
94	Decoupled mitochondrial and chloroplast DNA population structure reveals Holocene collapse and population isolation in a threatened Mexican-endemic conifer. Molecular Ecology, 2006, 15, 2787-2800.	2.0	83
95	Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Molecular Ecology, 2006, 15, 3907-3918.	2.0	33
96	Comparative genome mapping among Picea glauca, P. mariana \hat{AA} — \hat{AP} . rubens and P. abies, and correspondence with other Pinaceae. Theoretical and Applied Genetics, 2006, 113, 1371-1393.	1.8	81
97	Simple sequence repeat (SSR) markers in the ectomycorrhizal fungus Laccaria bicolor for environmental monitoring of introduced strains and molecular ecology applications. Mycological Research, 2006, 110, 51-59.	2.5	25
98	Automated SNP detection from a large collection of white spruce expressed sequences: contributing factors and approaches for the categorization of SNPs. BMC Genomics, 2006, 7, 174.	1.2	68
99	A mitochondrial DNA minisatellite reveals the postglacial history of jack pine (Pinus banksiana), a broad-range North American conifer. Molecular Ecology, 2005, 14, 3497-3512.	2.0	121
100	Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics, 2005, 6, 144.	1.2	119
101	A composite linkage map from two crosses for the species complex Picea mariana \tilde{A} — Picea rubens and analysis of synteny with other Pinaceae. Theoretical and Applied Genetics, 2005, 111, 1466-1488.	1.8	33
102	Species-diagnostic markers in Larix spp. based on RAPDs and nuclear, cpDNA, and mtDNA gene sequences, and their phylogenetic implications. Tree Genetics and Genomes, 2005, 1, 50-63.	0.6	35
103	Large-scale statistical analysis of secondary xylem ESTs in pine. Plant Molecular Biology, 2005, 57, 203-224.	2.0	42
104	Transâ€species shared polymorphisms at orthologous nuclear gene loci among distant species in the conifer <i>Picea </i> (Pinaceae): implications for the longâ€term maintenance of genetic diversity in trees. American Journal of Botany, 2005, 92, 63-73.	0.8	113
105	Mitochondrial Genome Recombination in the Zone of Contact Between Two Hybridizing Conifers. Genetics, 2005, 171, 1951-1962.	1.2	69
106	The impact of climate change on growth of local white spruce populations in Québec, Canada. Forest Ecology and Management, 2005, 205, 169-182.	1.4	113
107	The Evolutionary Implications of knox-I Gene Duplications in Conifers: Correlated Evidence from Phylogeny, Gene Mapping, and Analysis of Functional Divergence. Molecular Biology and Evolution, 2004, 21, 2232-2245.	3.5	69

Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 To 2.0

#	Article	IF	CITATIONS
109	Efficient screening for expressed sequence tag polymorphisms (ESTPs) by DNA pool sequencing and denaturing gradient gel electrophoresis (DGGE) in spruces. Molecular Breeding, 2004, 13, 263-279.	1.0	25
110	Multivariate patterns of adaptive genetic variation and seed source transfer in Picea mariana. Canadian Journal of Forest Research, 2004, 34, 531-545.	0.8	66
111	Molecular phylogeny of Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequences. Plant and Soil, 2003, 254, 207-217.	1.8	45
112	Diverging patterns of mitochondrial and nuclear DNA diversity in subarctic black spruce: imprint of a founder effect associated with postglacial colonization. Molecular Ecology, 2003, 12, 891-901.	2.0	77
113	Molecular genetic diversity of the French-American grapevine hybrids cultivated in North America. Genome, 2003, 46, 1037-1048.	0.9	41
114	New evidence from mitochondrial DNA of a progenitorâ€derivative species relationship between black spruce and red spruce (Pinaceae). American Journal of Botany, 2003, 90, 1801-1806.	0.8	30
115	Molecular phylogeny of Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequences. , 2003, , 207-217.		2
116	Genetic diversity and mating system of post-fire and post-harvest black spruce: an investigation using codominant sequence-tagged-site (STS) markers. Canadian Journal of Forest Research, 2001, 31, 32-40.	0.8	40
117	Life span and biomass allocation of stunted black spruce clones in the subarctic environment. Journal of Ecology, 2000, 88, 584-593.	1.9	48
118	Direct evidence for biased gene diversity estimates from dominant random amplified polymorphic DNA (RAPD) fingerprints. Molecular Ecology, 1999, 8, 477-483.	2.0	92
119	Sequence-tagged-site (STS) markers of arbitrary genes: the amount and nature of variation revealed in Norway spruce. Heredity, 1999, 83, 239-248.	1.2	20
120	Sequence-Tagged-Site (STS) Markers of Arbitrary Genes: Development, Characterization and Analysis of Linkage in Black Spruce. Genetics, 1998, 149, 1089-1098.	1,2	51
121	Phylogeny and Phylogeography of the Circumpolar GenusFraxinus(OLEACEAE) Based on Internal Transcribed Spacer Sequences of Nuclear Ribosomal DNA. Molecular Phylogenetics and Evolution, 1997, 7, 241-251.	1.2	58
122	Occurrence of somaclonal variation among somatic embryoâ€derived white spruces (<i>Picea) Tj ETQq0 0 0 rgBT</i>	/8.8rlock	10 Tf 50 22
123	The evolution of the actinorhizal symbiosis through phylogenetic analysis of host plants. Acta Botanica Gallica, 1996, 143, 635-650.	0.9	7
124	Genetic Diversity and Phylogenetic Relationships between Birches and Alders Using ITS, 18S rRNA, and rbcL Gene Sequences. Molecular Phylogenetics and Evolution, 1993, 2, 112-118.	1.2	60
125	The rbcL gene sequence from chestnut indicates a slow rate of evolution in the Fagaceae. Genome, 1993, 36, 668-671.	0.9	62
126	Genetic diversity in Canadian Hardwoods: Implications for conservation. Forestry Chronicle, 1992, 68, 709-719.	0.5	12

#	Article	IF	CITATIONS
127	Relationships between balsam fir vulnerability to spruce budworm and ecological site conditions of fir stands in central Quebec. Canadian Journal of Forest Research, 1991, 21, 1752-1759.	0.8	31
128	The Genetics of Actinorhizal Betulaceae., 1990,, 239-261.		9
129	Restriction fragment polymorphisms in the rDNA region among seven species ofAlnus andBetula papyrifera. Plant and Soil, 1989, 118, 231-240.	1.8	15
130	ALLOZYME VARIATION WITHIN AND AMONG MATURE POPULATIONS OF SPECKLED ALDER (ALNUS RUGOSA) AND RELATIONSHIPS WITH GREEN ALDER (A. CRISPA). American Journal of Botany, 1988, 75, 1678-1686.	0.8	22
131	Isozyme Variation among 40 <i>Frankia</i> Strains. Applied and Environmental Microbiology, 1987, 53, 1596-1603.	1.4	48
132	Les gÃ@nomes du pin gris et du pin tordu, tÃ@moins des bouleversements climatiques passÃ@s. Le Naturaliste Canadien, 0, 138, 32-44.	0.2	1