Masahiro Sadakane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1104942/publications.pdf

Version: 2024-02-01

205 papers 8,313 citations

50276 46 h-index 83 g-index

237 all docs

237 docs citations

times ranked

237

6044 citing authors

#	Article	IF	CITATIONS
1	Dual Templating for AFX/LEV Intergrowth Zeolite. Chemistry Letters, 2022, 51, 121-123.	1.3	1
2	Oxidation Catalysis over Solid-State Keggin-Type Phosphomolybdic Acid with Oxygen Defects. Journal of the American Chemical Society, 2022, 144, 7693-7708.	13.7	30
3	Preyssler-type phosphotungstate is a new family of negative-staining reagents for the TEM observation of viruses. Scientific Reports, 2022, 12, 7554.	3.3	9
4	Assembly of É≀â€Keggin Polyoxometalate from Molecular Crystal to Zeolitic Octahedral Metal Oxide. Chemistry - A European Journal, 2022, , .	3.3	5
5	Post-synthetic amine functionalized SAPO-5 & SAPO-34 molecular sieves for epoxide ring opening reactions. Materials Today: Proceedings, 2021, 45, 3726-3732.	1.8	3
6	Structural Characterization of Ceriumâ€encapsulated Preysslerâ€type Phosphotungstate: Additional Evidence of Ce(III) in the Cavity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1239-1244.	1,2	2
7	Ultrahigh Proton Conduction via Extended Hydrogen-Bonding Network in a Preyssler-Type Polyoxometalate-Based Framework Functionalized with a Lanthanide Ion. ACS Applied Materials & Samp; Interfaces, 2021, 13, 19138-19147.	8.0	25
8	Multiple templating strategy for the control of aluminum and phosphorus distributions in AFX zeolite. Microporous and Mesoporous Materials, 2021, 321, 111124.	4.4	5
9	Isolation and characterization of hirame aquareovirus (HAqRV): A new Aquareovirus isolated from diseased hirame Paralichthys olivaceus. Virology, 2021, 559, 120-130.	2.4	4
10	Zeolitic Octahedral Metal Oxides with Ultraâ€Small Micropores for C 2 Hydrocarbon Separation. Angewandte Chemie, 2021, 133, 18476-18482.	2.0	5
11	Zeolitic Octahedral Metal Oxides with Ultraâ€Small Micropores for C ₂ Hydrocarbon Separation. Angewandte Chemie - International Edition, 2021, 60, 18328-18334.	13.8	20
12	Structure and Thermal Transformations of Methylammonium Tungstate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1930-1937.	1.2	6
13	Catalytic Activities of Various Niobium Oxides for Hydrogen Absorption/Desorption Reactions of Magnesium. ACS Omega, 2021, 6, 23564-23569.	3.5	7
14	Singleâ€Molecule Magnetic, Catalytic and Photoluminescence Properties of Heterometallic 3 d –4 f [Ln{PZn 2 W 10 O 38 (H 2 O) 2 } 2] 11â°' Tungstophosphate Nanoclusters. European Journal of Inorganic Chemistry, 2021, 2021, 3819.	2.0	7
15	Synthesis of Phosphorus-Modified AFX Zeolite by the Hydrothermal Conversion of Tetraalkylphosphonium Hydroxide-Impregnated FAU Zeolite. Bulletin of the Chemical Society of Japan, 2021, 94, 1-7.	3.2	6
16	Synthesis and Characterization of a Novel Heteropoly Acid/Hydrogel Composite. MATEC Web of Conferences, 2021, 333, 11005.	0.2	0
17	New Path for Polyoxometalates: Controlled Synthesis and Characterization of Metalâ€Substituted Tungstosulfates. European Journal of Inorganic Chemistry, 2020, 2020, 682-689.	2.0	1
18	Formation Pathway of AEI Zeolites as a Basis for a Streamlined Synthesis. Chemistry of Materials, 2020, 32, 60-74.	6.7	30

#	Article	IF	Citations
19	Solidâ€State Ion Migration in the Preysslerâ€Type Phosphotungstate for the Preparation of the Dipotassium Cationâ€Encapsulated Derivative. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1297-1302.	1.2	2
20	Effective Factor on Catalysis of Niobium Oxide for Magnesium. ACS Omega, 2020, 5, 21906-21912.	3.5	10
21	Triple-template system for phosphorus-modified AFX/CHA intergrowth zeolite. Microporous and Mesoporous Materials, 2020, 309, 110540.	4.4	5
22	High-quality synthesis of a nanosized CHA zeolite by a combination of a starting FAU zeolite and aluminum sources. Dalton Transactions, 2020, 49, 9972-9982.	3.3	21
23	Metal-substituted tungstosulfates with Keggin structure: synthesis and characterization. Dalton Transactions, 2020, 49, 2766-2770.	3.3	11
24	New Path for Polyoxometalates: Controlled Synthesis and Characterization of Metal-Substituted Tungstosulfates. European Journal of Inorganic Chemistry, 2020, 2020, 666-666.	2.0	1
25	Synthesis of Preyssler-Type Phosphotungstate with Sodium Cation in the Central Cavity through Migration of the Ion. Bulletin of the Chemical Society of Japan, 2020, 93, 461-466.	3.2	5
26	Vanadium-Enhanced Intramolecular Redox Property of a Transition-Metal Oxide Molecular Wire. Inorganic Chemistry, 2020, 59, 16557-16566.	4.0	4
27	Thermal Behavior, Crystal Structure, and Solid-State Transformation of Orthorhombic Mo–V Oxide under Nitrogen Flow or in Air. ACS Omega, 2019, 4, 13165-13171.	3.5	9
28	Immobilizaion of Preyssler type heteropoly acids on siliceous mesporous supports and their catalytic activities in the dehydration of ethanol. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 139-147.	1.7	6
29	Intramolecular Electron Transfer and Oxygen Transfer of Phosphomolybdate Molecular Wires. Inorganic Chemistry, 2019, 58, 12272-12279.	4.0	4
30	Celebrating Polyoxometalate Chemistry. European Journal of Inorganic Chemistry, 2019, 2019, 340-342.	2.0	14
31	Photocatalytic Activation of C–H Bonds by Spatially Controlled Chlorine and Titanium on the Silicate Layer. ACS Catalysis, 2019, 9, 5742-5751.	11.2	22
32	Redox-Active Zeolitic Transition Metal Oxides Based on Îμ-Keggin Units for Selective Oxidation. Inorganic Chemistry, 2019, 58, 6283-6293.	4.0	23
33	Synthesis of GME zeolite with high porosity by hydrothermal conversion of FAU zeolite using a dual-template method with tetraethylphosphonium and N,N-dimethyl-3,5-dimethylpiepridinium hydroxides. Journal of Porous Materials, 2019, 26, 1345-1352.	2.6	8
34	Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Applied Catalysis A: General, 2019, 575, 204-213.	4.3	33
35	Syntheses, and Crystal Structures of Y III Containing Diâ€Metal Substituted 1,5 Isomers of Heterometallic Tungstophosphate Nanoclusters: [Y{PM 2 W 10 O 38 (H 2 O) 2 } 2] 11– (M=Co II and Zn II) Tj	j ETiQsq1 1	0. 7 84314 rgB
36	Selfâ€Assembled Tetrameric Lanthanideâ€Containing Germanotungstates [(Ln 2 GeW 10 O 38) 4 (W 3 O 8) Tj	ETQq0 0 0 1.5	O rgBT /Overlo 7

3

Properties.. ChemistrySelect, 2019, 4, 12668-12675.

#	Article	IF	CITATIONS
37	A Sandwich Complex of Bismuth Cation and Monoâ€Lacunary αâ€Kegginâ€Type Phosphotungstate: Preparation and Structural Characterisation. European Journal of Inorganic Chemistry, 2019, 2019, 357-362.	2.0	8
38	Facile synthesis of highly crystalline EMT zeolite by hydrothermal conversion of FAU zeolite in the presence of 1,1'-(1,4-butanediyl)bis(1-azonia-4-azabicyclo [2,2,2]octane) dihydroxide. Microporous and Mesoporous Materials, 2019, 274, 299-303.	4.4	8
39	Multi-dimensional Crystal Structuring of Complex Metal Oxide Catalysts of Group V and VI Elements by Unit-Assembling. Topics in Catalysis, 2019, 62, 1157-1168.	2.8	6
40	Zeolite hydrothermal conversion in the presence of various cyclic alkylammonium cations and synthesis of nanosized BEA and MFI zeolites. Microporous and Mesoporous Materials, 2019, 277, 115-123.	4.4	16
41	A Self-Assembled Heterometallic {Co7 -Ho1 } Nanocluster: 3d-4f Trimeric Keggin-Type Silicotungstate [HoCo7 Si3 W29 O108 (OH)5 (H2 O)4]18 - and its Catalytic and Magnetic Applications. European Journal of Inorganic Chemistry, 2019, 2019, 430-436.	2.0	15
42	New Crystalline Complex Metal Oxide Catalysts with Porous, Acidic, and Redox Properties. , 2019, , 199-221.		0
43	Preparation of Preyssler-type Phosphotungstate with One Central Potassium Cation and Potassium Cation Migration into the Preyssler Molecule to form Di-Potassium-Encapsulated Derivative. ACS Omega, 2018, 3, 2363-2373.	3.5	17
44	Synthesis of phosphorus-modified AFX zeolite using a dual-template method with tetraethylphosphonium hydroxide as phosphorus modification agent. Microporous and Mesoporous Materials, 2018, 267, 192-197.	4.4	22
45	Reactivity of a (Benzene)Ruthenium(II) Cation on a Di-lacunary γ-Keggin-Type Silicotungstate and Synthesis of a Mono-(Benzene)Ruthenium(II)-Attached γ-Keggin-Type Silicotungstate. European Journal of Inorganic Chemistry, 2018, 2018, 1776-1776.	2.0	O
46	Highly Active Layered Titanosilicate Catalyst with High Surface Density of Isolated Titanium on the Accessible Interlayer Surface. ChemCatChem, 2018, 10, 2536-2540.	3.7	25
47	A supramolecular photocatalyst composed of a polyoxometalate and a photosensitizing water-soluble porphyrin diacid for the oxidation of organic substrates in water. Green Chemistry, 2018, 20, 1975-1980.	9.0	38
48	Reactivity of a (Benzene)Ruthenium(II) Cation on a Diâ€lacunary γâ€Kegginâ€Type Silicotungstate and Synthesis of a Monoâ€(Benzene)Ruthenium(II)â€Attached γâ€Kegginâ€Type Silicotungstate. European Journal of Inorganic Chemistry, 2018, 2018, 1778-1786.	2.0	4
49	A zeolitic vanadotungstate family with structural diversity and ultrahigh porosity for catalysis. Nature Communications, 2018, 9, 3789.	12.8	30
50	Stepwise Gel Preparation for High-Quality CHA Zeolite Synthesis: AÂCommon Tool for Synthesis Diversification. Crystal Growth and Design, 2018, 18, 5652-5662.	3.0	15
51	Synthesis and characterization of carbonate-encapsulated ytterbium- and yttrium-containing polyoxotungstates. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1355-1361.	0.5	7
52	Synthesis, Characterization, and Structure of a Reduced Preyssler-type Polyoxometalate. Chemistry Letters, 2017, 46, 602-604.	1.3	14
53	Structural Dependence of the Effects of Polyoxometalates on Liposome Collapse Activity. Chemistry Letters, 2017, 46, 533-535.	1.3	14
54	Synthesis of ε-Keggin-Type Cobaltomolybdate-Based 3D Framework Material and Characterization Using Atomic-Scale HAADF-STEM and XANES. Inorganic Chemistry, 2017, 56, 2042-2049.	4.0	13

#	Article	IF	CITATIONS
55	Synthesis of crystalline molybdenum oxides based on a 1D molecular structure and their ion-exchange properties. New Journal of Chemistry, 2017, 41, 4503-4509.	2.8	7
56	Design of a highly active base catalyst through utilizing organic-solvent-treated layered silicate Hiroshima University Silicates. Dalton Transactions, 2017, 46, 7441-7450.	3.3	16
57	Synthesis of Crystalline Microporous Mo–V–Bi Oxide for Selective (Amm)Oxidation of Light Alkanes. Chemistry of Materials, 2017, 29, 2939-2950.	6.7	24
58	Incorporation of various heterometal atoms in CHA zeolites by hydrothermal conversion of FAU zeolite and their performance for selective catalytic reduction of NO x with ammonia. Microporous and Mesoporous Materials, 2017, 246, 89-101.	4.4	27
59	The Assembly of an Allâ€Inorganic Porous Soft Framework from Metal Oxide Molecular Nanowires. Chemistry - A European Journal, 2017, 23, 1972-1980.	3.3	11
60	Ultrathin Anionic Tungstophosphite Molecular Wire with Tunable Hydrophilicity and Catalytic Activity for Selective Epoxidation in Organic Media. Chemistry - A European Journal, 2017, 23, 17497-17503.	3.3	13
61	Two New Sandwich-Type Manganese {Mn5}-Substituted Polyoxotungstates: Syntheses, Crystal Structures, Electrochemistry, and Magnetic Properties. Inorganic Chemistry, 2017, 56, 8759-8767.	4.0	43
62	High-Performance Cathode Based on Microporous Mo–V–Bi Oxide for Li Battery and Investigation by <i>Operando</i> X-ray Absorption Fine Structure. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26052-26059.	8.0	6
63	Thermally stable nanosized LEV zeolites synthesized by hydrothermal conversion of FAU zeolites in the presence of N,N-dimethylpiperidinium cations. Journal of Materials Chemistry A, 2017, 5, 19245-19254.	10.3	34
64	Ultrathin Anionic Tungstophosphite Molecular Wire with Tunable Hydrophilicity and Catalytic Activity for Selective Epoxidation in Organic Media. Chemistry - A European Journal, 2017, 23, 17397-17397.	3.3	0
65	Structural Characterization of 2D Zirconomolybdate by Atomic Scale HAADF-STEM and XANES and Its Highly Stable Electrochemical Properties as a Li Battery Cathode. Inorganic Chemistry, 2017, 56, 14306-14314.	4.0	4
66	New crystalline complex metal oxides created by unit-synthesis and their catalysis based on porous and redox properties. Faraday Discussions, 2016, 188, 81-98.	3.2	13
67	Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion. Angewandte Chemie - International Edition, 2016, 55, 10234-10238.	13.8	27
68	Lanthanoid Template Isolation of the $\hat{l}\pm -1,5$ Isomer of Dicobalt(II)-Substituted Keggin Type Phosphotungstates: Syntheses, Characterization, and Magnetic Properties. Inorganic Chemistry, 2016, 55, 8292-8300.	4.0	19
69	Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion. Angewandte Chemie, 2016, 128, 10390-10394.	2.0	9
70	One-pot Synthesis of Phosphorus-modified AEI Zeolites Derived by the Dual-template Method as a Durable Catalyst with Enhanced Thermal/Hydrothermal Stability for Selective Catalytic Reduction of NO <i>_x</i> by NH ₃ . Chemistry Letters, 2016, 45, 122-124.	1.3	36
71	Encapsulation of Two Potassium Cations in Preyssler-Type Phosphotungstates: Preparation, Structural Characterization, Thermal Stability, Activity as an Acid Catalyst, and HAADF-STEM Images. Inorganic Chemistry, 2016, 55, 11583-11592.	4.0	13
72	Synthesis of Vanadiumâ€Incorporated, Polyoxometalateâ€Based Open Frameworks and Their Applications for Cathodeâ€Active Materials. European Journal of Inorganic Chemistry, 2016, 2016, 1242-1250.	2.0	17

#	Article	IF	CITATIONS
73	Preparation of $\hat{l}\pm$ sub>1- and $\hat{l}\pm$ sub>2-isomers of mono-Ru-substituted Dawson-type phosphotungstates with an aqua ligand and comparison of their redox potentials, catalytic activities, and thermal stabilities with Keggin-type derivatives. Dalton Transactions, 2016, 45, 3715-3726.	3.3	16
74	Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite. Microporous and Mesoporous Materials, 2016, 225, 524-533.	4.4	86
7 5	Synthesis of phosphorus-modified small-pore zeolites utilizing tetraalkyl phosphonium cations as both structure-directing and phosphorous modification agents. Microporous and Mesoporous Materials, 2016, 223, 129-139.	4.4	51
76	Hydrothermal Conversion of Titanated FAU to AEI Zeolite and Its Enhanced Catalytic Performance for NO _{<i>x </i>} Reduction. Advanced Porous Materials, 2016, 4, 62-72.	0.3	12
77	Preparation and Structural Characterization of Mono-Ru-Substituted $\hat{l}\pm 2$ -Dawson-Type Phosphotungstate with a Carbonyl Ligand and Other Ru(CO)-Substituted Heteropolytungstates. European Journal of Inorganic Chemistry, 2015, 2015, 2714-N2723.	2.0	10
78	Cation Effect on Formation of Preysslerâ€type 30â€Tungstoâ€5â€phosphate: Enhanced Yield of Naâ€encapsulate Derivative and Direct Synthesis of Ca―and Biâ€Encapsulated Derivatives. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2670-2676.	ed 1.2	20
79	Fimbriae Expression by <i>Edwardsiella tarda</i> in High-salt Culture Conditions. Fish Pathology, 2015, 50, 207-212.	0.7	2
80	Synthesis of titanated chabazite with enhanced thermal stability by hydrothermal conversion of titanated faujasite. Microporous and Mesoporous Materials, 2015, 215, 58-66.	4.4	32
81	Ultrathin inorganic molecular nanowire based on polyoxometalates. Nature Communications, 2015, 6, 7731.	12.8	50
82	Highly active and selective Ti-incorporated porous silica catalysts derived from grafting of titanium(<scp>iv</scp>)acetylacetonate. Journal of Materials Chemistry A, 2015, 3, 15280-15291.	10.3	30
83	Redox Treatment of Orthorhombic Mo ₂₉ V ₁₁ O ₁₁₂ and Relationships between Crystal Structure, Microporosity and Catalytic Performance for Selective Oxidation of Ethane. Journal of Physical Chemistry C, 2015, 119, 7195-7206.	3.1	49
84	Design of Microporous Material HUS-10 with Tunable Hydrophilicity, Molecular Sieving, and CO ₂ Adsorption Ability Derived from Interlayer Silylation of Layered Silicate HUS-2. ACS Applied Materials & Design Company (2015), 7, 24360-24369.	8.0	20
85	Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NO _x with NH ₃ . Journal of Materials Chemistry A, 2015, 3, 857-865.	10.3	95
86	Selective carbon dioxide adsorption of $\hat{l}\mu$ -Keggin-type zincomolybdate-based purely inorganic 3D frameworks. Journal of Materials Chemistry A, 2015, 3, 746-755.	10.3	39
87	Functionalization of Layered Titanates. Journal of Nanoscience and Nanotechnology, 2014, 14, 2135-2147.	0.9	48
88	Preparation and Characterization of Preysslerâ€type Phosphotungstic Acid, H _{15â€"<i>n</i>} [P ₅ W ₃₀ O ₁₁₀ <i>Mⁿ</i> >with Different Encapsulated Cations (<i>M</i> = Na, Ca, Bi, Eu, Y, or Ce), and their Thermal Stability and Acid Catalyst Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1314-1321.	· {/sup>], 1.2	20
89	Tetrahedral Connection of ε-Keggin-type Polyoxometalates To Form an All-Inorganic Octahedral Molecular Sieve with an Intrinsic 3D Pore System. Inorganic Chemistry, 2014, 53, 903-911.	4.0	65
90	Synthesis and characteristics of novel layered silicate HUS-7 using benzyltrimethylammonium hydroxide and its unique and selective phenol adsorption behavior. Journal of Materials Chemistry A, 2014, 2, 3372.	10.3	22

#	Article	IF	CITATIONS
91	Investigation of the formation process of zeolite-like 3D frameworks constructed with $\hat{l}\mu$ -Keggin-type polyoxovanadomolybdates with binding bismuth ions and preparation of a nano-crystal. Dalton Transactions, 2014, 43, 13584.	3.3	19
92	Design of Layered Silicate by Grafting with Metal Acetylacetonate for High Activity and Chemoselectivity in Photooxidation of Cyclohexane. ACS Applied Materials & Interfaces, 2014, 6, 4616-4621.	8.0	28
93	Preparation, Structural Characterization, and ion-Exchange Properties of Two New Zeolite-like 3D Frameworks Constructed by ε-Keggin-Type Polyoxometalates with Binding Metal Ions, H _{11.4} [ZnMo ₁₂ O ₄₀ Zn ₂] ^{1.5â€"} and H _{7.5} [Mn _{]_{]_{]_{]_{]^{2.1â€"}}}}}}	4.0	48
94	Preparation and Redox Studies of α ₁ - and α ₂ -Isomers of Mono-Ru-Substituted Dawson-type Phosphotungstates with a DMSO Ligand: [α ₁ /α ₂ -P ₂ W ₁₇ O ₆₁ Ru ^{II} (DMSO)]Inorganic Chemistry, 2014, 53, 3526-3539.	sup>8–	<16 .
95	Synthesis and Structural Characterization of Isomers of Ru-Substituted Keggin-Type Germanotungstate with dmso Ligand. Journal of Cluster Science, 2014, 25, 755-770.	3.3	9
96	Recreation of Br \tilde{A} , nsted acid sites in phosphorus-modified HZSM-5(Ga) by modification with various metal cations. Applied Catalysis A: General, 2014, 481, 161-168.	4.3	14
97	Hydrothermal conversion of FAU and â^—BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals. Microporous and Mesoporous Materials, 2014, 196, 254-260.	4.4	38
98	Incorporation of Heteropolyacids into Layered Silicate HUS-2 Grafted with 3-(Aminopropyl)triethoxysilane. Bulletin of the Chemical Society of Japan, 2014, 87, 1379-1385.	3.2	10
99	An Efficient Way to Synthesize Hiroshima University Silicate-1 (HUS-1) and the Selective Adsorption Property of Ni2+ from Seawater. Bulletin of the Chemical Society of Japan, 2014, 87, 160-166.	3.2	10
100	Facile Synthesis of AEI Zeolites by Hydrothermal Conversion of FAU Zeolites in the Presence of Tetraethylphosphonium Cations. Chemistry Letters, 2014, 43, 302-304.	1.3	52
101	Structure and electrochemical activity of WOx-supported PtRu catalyst using three-dimensionally ordered macroporous WO3 as the template. Journal of Power Sources, 2013, 241, 728-735.	7.8	21
102	Characterization of layered silicate HUS-5 and formation of novel nanoporous silica through transformation of HUS-5 ion-exchanged with alkylammonium cations. Journal of Materials Chemistry A, 2013, 1, 9680.	10.3	13
103	Preparation of tetrabutylammonium salt of a mono-Ru(iii)-substituted α-Keggin-type silicotungstate with a 4,4′-bipyridine ligand and its electrochemical behaviour in organic solvents. Dalton Transactions, 2013, 42, 7190.	3.3	12
104	Precisely designed layered silicate as an effective and highly selective CO2 adsorbent. Chemical Communications, 2013, 49, 9027.	4.1	24
105	An orthorhombic Mo ₃ VO _x catalyst most active for oxidative dehydrogenation of ethane among related complex metal oxides. Catalysis Science and Technology, 2013, 3, 380-387.	4.1	90
106	Determination of α-Keggin structure of [GeW ₁₁ O ₃₉ Ru ^{III2O)]^{5â^'}. Reaction of [GeW₁₁O₃₉Ru^{III22O)]^{5â^'}with dimethyl sulfoxide to form [GeW₁₁O₃₉Ru^{IIIRu^{III(dmso)]^{5â^'}and their structural characterization. Dalton Transactions, 2013, 42, 2540-2545.}}}}	3.3	20
107	One-pot synthesis of microporous and mesoporous (NH4)3PW12O40 by reaction of in-situ generated PW12O403â° with NH4+ in a strongly acidic solution. Materials Research Bulletin, 2013, 48, 4157-4162.	5.2	5
108	First synthesis of SAPO molecular sieve with LTL-type structure by hydrothermal conversion of SAPO-37 with FAU-type structure. Microporous and Mesoporous Materials, 2013, 179, 224-230.	4.4	9

#	Article	IF	CITATIONS
109	Effects of Au Loading and CO ₂ Addition on Photocatalytic Selective Phenol Oxidation over TiO ₂ â€Supported Au Nanoparticles. ChemCatChem, 2013, 5, 766-773.	3.7	23
110	Ternary modified TiO2 as a simple and efficient photocatalyst for green organic synthesis. Chemical Communications, 2013, 49, 3652.	4.1	26
111	Assembly of a Pentagonal Polyoxomolybdate Building Block, [Mo6O21]6-, into Crystalline MoV Oxides. European Journal of Inorganic Chemistry, 2013, 2013, 1731-1736.	2.0	35
112	Synthesis of Novel Orthorhombic Mo and V Based Complex Oxides Coordinating Alkylammonium Cation in Its Heptagonal Channel and Their Application as a Catalyst. Chemistry of Materials, 2013, 25, 2211-2219.	6.7	34
113	Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 3020-3026.	0.9	67
114	Organorutheniumâ€Containing Heteropolyâ€23â€Tungstate Family [{Ru(L)} ₂ (αâ€XW ₁₁ O ₃₉) ₂ WO ₂ } <i>sub>2} (L = benzene, <i>p</i> â€cymene; X = Ge^{IV}, Si^{IV}, <i>m</i> = 10; B^{III},) Tj</i>	n–∢/sup> ETQq000	· rgBT /Overloc
115	Effect of Structure-Directing Agents on FAU–CHA Interzeolite Conversion and Preparation of High Pervaporation Performance CHA Zeolite Membranes for the Dehydration of Acetic Acid Solution. Bulletin of the Chemical Society of Japan, 2013, 86, 1333-1340.	3.2	19
116	Molecular Recognitive Adsorption of Aqueous Propionic Acid on Hiroshima University Silicate-2 (HUS-2). Chemistry Letters, 2013, 42, 244-246.	1.3	8
117	High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 2013, 56, 183-197.	0.6	87
118	Conversion of Ethanol into Propylene over TON Type Zeolite. Journal of the Japan Petroleum Institute, 2013, 56, 22-31.	0.6	10
119	Effective and Selective Bisphenol A Synthesis on a Layered Silicate with Spatially Arranged Sulfonic Acid. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2186-2191.	8.0	29
120	Important Property of Polymer Spheres for the Preparation of Three-Dimensionally Ordered Macroporous (3DOM) Metal Oxides by the Ethylene Glycol Method: The Glass-Transition Temperature. Langmuir, 2012, 28, 17766-17770.	3.5	43
121	Hydrothermal and solid-state transformation of ruthenium-supported Keggin-type heteropolytungstates [XW11O39{Ru(ii)(benzene)(H2O)}]nâ $^{\circ}$ (X = P (n = 5), Si (n = 6), Ge (n = 6)) to ruthenium-substituted Keggin-type heteropolytungstates. Dalton Transactions, 2012, 41, 9901.	3.3	33
122	Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 2012, 22, 13682.	6.7	39
123	Molecular recognitive adsorption of aqueous tetramethylammonium on the organic derivative of Hiroshima University Silicate-1 with a silane coupling reagent. Chemical Communications, 2012, 48, 7073.	4.1	17
124	Highly efficient and selective sunlight-induced photocatalytic oxidation of cyclohexane on an eco-catalyst under a CO2 atmosphere. Green Chemistry, 2012, 14, 1264.	9.0	27
125	Sunlight-induced effective heterogeneous photocatalytic decomposition of aqueous organic pollutants to CO2 assisted by a CO2 sorbent, amine-containing mesoporous silica. Chemical Communications, 2012, 48, 5521.	4.1	9
126	Building Block Synthesis of Crystalline Mo–V-based Oxides: Selective Oxidation Catalysts. Journal of the Japan Petroleum Institute, 2012, 55, 229-235.	0.6	6

#	Article	IF	CITATIONS
127	Efficient and Selective Photocatalytic Cyclohexane Oxidation on a Layered Titanate Modified with Iron Oxide under Sunlight and CO ₂ Atmosphere. ACS Catalysis, 2012, 2, 1910-1915.	11.2	61
128	Stabilization of Highâ€Valence Ruthenium with Silicotungstate Ligands: Preparation, Structural Characterization, and Redox Studies of Ruthenium(III)â€Substituted αâ€Kegginâ€Type Silicotungstates with Pyridine Ligands, [SiW ₁₁ O ₃₉ Ru ^{III} (Py)] ^{5â^'} . Chemistry - an Asian Journal, 2012, 7, 1331-1339.	3.3	27
129	Conversion of ethanol to propylene over HZSM-5(Ga) co-modified with lanthanum and phosphorous. Applied Catalysis A: General, 2012, 417-418, 137-144.	4.3	33
130	Morphology-controlled preparation of iron-based oxides using a paper template. Materials Letters, 2012, 81, 80-83.	2.6	2
131	Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution. Microporous and Mesoporous Materials, 2012, 158, 141-147.	4.4	90
132	Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous and Mesoporous Materials, 2012, 158, 117-122.	4.4	71
133	Redox tunable reversible molecular sieves: orthorhombic molybdenum vanadium oxide. Chemical Communications, 2011, 47, 10812.	4.1	40
134	Alpha and beta isomers of tetrahafnium(iv) containing decatungstosilicates, [Hf4(OH)6(CH3COO)2(x-SiW10O37)2]12 \hat{a} (x = \hat{l} ±, \hat{l} 2). Dalton Transactions, 2011, 40, 2920.	3.3	25
135	Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2 atmosphere. Chemical Communications, 2011, 47, 11531.	4.1	55
136	Preparation of Crystalline Tungsten Oxide Nanorods with Enhanced Photocatalytic Activity under Visible Light Irradiation. Chemistry Letters, 2011, 40, 443-445.	1.3	19
137	Incorporation of highly dispersed aluminum into inner surfaces of supermicroporous silica using anionic surfactant. Journal of Porous Materials, 2011, 18, 493-500.	2.6	2
138	Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. Journal of Crystal Growth, 2011, 325, 96-100.	1.5	45
139	Preparation and StructuralCharacterization of Ru ^{li} a€DMSO and Ru ^{li} a€DMSOaf€substituted αâ€Kegginâ€type Phosphotungstates, [PW ₁₁ O ₃₉ Ru ^{li} DMSO] ^{5–} and [PW ₁₁ O ₃₉ Ru ^{li} DMSO] ^{4–} , and Catalytic Activity for	1.2	31
140	Thermal Stability and Acidic Strength of Preysslerâ€Type Phosphotungstic Acid, H ₁₄ [P ₅ W ₃₀ O ₁₁₀ Na] and It's Catalytic Activity for Hydrolysis of Alkyl Acetates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 2120-2124.	1.2	18
141	Influence of structural differences and acidic properties of phosphotungstic acids on their catalytic performance for acylation of pyruvate ester to α-acyloxyacrylate ester. Catalysis Today, 2011, 164, 107-111.	4.4	11
142	Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous and Mesoporous Materials, 2011, 144, 91-96.	4.4	107
143	Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. Applied Catalysis A: General, 2011, 399, 262-267.	4.3	66
144	Preparation and formation mechanism of three-dimensionally ordered macroporous (3DOM) MgO, MgSO4, CaCO3, and SrCO3, and photonic stop band properties of 3DOM CaCO3. Journal of Solid State Chemistry, 2011, 184, 2299-2305.	2.9	17

#	Article	IF	CITATIONS
145	FAU–LEV interzeolite conversion in fluoride media. Microporous and Mesoporous Materials, 2011, 138, 32-39.	4.4	29
146	Influence of seeding on FAU–â^—BEA interzeolite conversions. Microporous and Mesoporous Materials, 2011, 142, 161-167.	4.4	64
147	Influence of starting zeolite on synthesis of RUT type zeolite by interzeolite conversion method. Journal of Crystal Growth, 2011, 314, 274-278.	1.5	21
148	Nano-Scale Deposition of Hydroxyapatite on Bioactive and Bioinert Fibers Using Carbon Nanofibers as Templates. Advanced Materials Research, 2011, 236-238, 2122-2125.	0.3	1
149	Nano-Scale Hydroxyapatite Formation on Silica Fiber by Using Carbon Nanofibers as Templates. Journal of Nanoscience and Nanotechnology, 2010, 10, 5431-5436.	0.9	6
150	Synthesis of 3-D Ordered Macroporous M <i>x</i> H3â^' <i>x</i> PW12O40 (M = Cs+ and NH4+): Trimodal Mirco-, Meso-, and Macropores in Cs <i>x</i> H3â^' <i>x</i> PW12O40 Material. Chemistry Letters, 2010, 39, 426-427.	1.3	2
151	Atomic-Scale Investigation of Two-Component MoVO Complex Oxide Catalysts Using Aberration-Corrected High-Angle Annular Dark-Field Imaging. Chemistry of Materials, 2010, 22, 2033-2040.	6.7	49
152	Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum–iron-oxide LaFeO3 with tunable pore diameters: High porosity and photonic property. Journal of Solid State Chemistry, 2010, 183, 1365-1371.	2.9	61
153	Synthesis of high-silica offretite by the interzeolite conversion method. Materials Research Bulletin, 2010, 45, 646-650.	5.2	42
154	Immobilization of nanofibrous A- or B-site substituted LaMnO3 perovskite-type oxides on macroscopic fiber with carbon nanofibers templates. Materials Research Bulletin, 2010, 45, 1330-1333.	5.2	13
155	Conversion of ethanol to propylene over HZSM-5 type zeolites containing alkaline earth metals. Applied Catalysis A: General, 2010, 383, 89-95.	4.3	81
156	Synthesis of single phase Ca-α-SiAlON using Y-type zeolite. Journal of the European Ceramic Society, 2010, 30, 1537-1541.	5 . 7	6
157	Mesoporous silicas containing carboxylic acid: Preparation, thermal degradation, and catalytic performance. Applied Catalysis A: General, 2010, 372, 82-89.	4.3	8
158	Atomic-level imaging of Mo-V-O complex oxide phase intergrowth, grain boundaries, and defects using HAADF-STEM. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6152-6157.	7.1	52
159	Synthesis and Characterization of Three-Dimensionally Ordered Macroporous (3DOM) Tungsten Carbide: Application to Direct Methanol Fuel Cells. Chemistry of Materials, 2010, 22, 966-973.	6.7	68
160	Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. Journal of Materials Chemistry, 2010, 20, 1811.	6.7	132
161	Synthesis and Applications of Mixed Oxide Nanotubes. Topics in Applied Physics, 2010, , 147-158.	0.8	4
162	Preparation of Well-Alloyed PtRu/C Catalyst by Sequential Mixing of the Precursors in a Polyol Method. Journal of the Electrochemical Society, 2009, 156, B1348.	2.9	11

#	Article	IF	Citations
163	Synthesis of Orthorhombic Moâ€Vâ€Sb Oxide Species by Assembly of Pentagonal Mo ₆ O ₂₁ Polyoxometalate Building Blocks. Angewandte Chemie - International Edition, 2009, 48, 3782-3786.	13.8	96
164	Facile preparation of SBA-15-supported niobic acid (Nb2O5·nH2O) catalyst and its catalytic activity. Applied Catalysis A: General, 2009, 365, 261-267.	4.3	24
165	An efficient synthesis of \hat{l} ±-acyloxyacrylate esters as candidate monomers for bio-based polymers by heteropolyacid-catalyzed acylation of pyruvate esters. Green Chemistry, 2009, 11, 1666.	9.0	15
166	Effect of SnO[sub 2] Deposition Sequence in SnO[sub 2]-Modified PtRu/C Catalyst Preparation on Catalytic Activity for Methanol Electro-Oxidation. Journal of the Electrochemical Society, 2009, 156, B862.	2.9	17
167	Molybdenum–Vanadiumâ€Based Molecular Sieves with Microchannels of Sevenâ€Membered Rings of Cornerâ€Sharing Metal Oxide Octahedra. Angewandte Chemie - International Edition, 2008, 47, 2493-2496.	13.8	102
168	Nano-structuring of complex metal oxides for catalytic oxidation. Catalysis Today, 2008, 132, 2-8.	4.4	33
169	Preparation of nano-structured crystalline tungsten(vi) oxide and enhanced photocatalytic activity for decomposition of organic compounds under visible light irradiation. Chemical Communications, 2008, , 6552.	4.1	101
170	An efficient heteropolyacid catalyzed acylation of pyruvate esters to \hat{l}_{\pm} -acyloxyacrylate esters as potential candidate monomers for bio-based polymers. Chemical Communications, 2008, , 5239.	4.1	5
171	Carbonyl–ruthenium substituted α-Keggin-tungstosilicate, [α-SiW11O39Rull(CO)]6â^: synthesis, structure, redox studies and reactivity. Dalton Transactions, 2008, , 6692.	3.3	47
172	Nano-Scale Hydroxyapatite Coating on Macroscopic Silica Fiber Using Carbon Nanofibers as Templates. Bulletin of the Chemical Society of Japan, 2008, 81, 380-386.	3.2	12
173	Preparation of Mixed Oxide Nanotubes by Precursor-accumulation on Carbon Nanofiber Templates. Chemistry Letters, 2007, 36, 258-259.	1.3	15
174	Three-Dimensionally Ordered Macroporous (3DOM) Materials of Spinel-Type Mixed Iron Oxides. Synthesis, Structural Characterization, and Formation Mechanism of Inverse Opals with a Skeleton Structure. Bulletin of the Chemical Society of Japan, 2007, 80, 677-685.	3.2	68
175	Facile Preparation of Three-Dimensionally Ordered Macroporous Alumina, Iron Oxide, Chromium Oxide, Manganese Oxide, and Their Mixed-Metal Oxides with High Porosity. Chemistry of Materials, 2007, 19, 5779-5785.	6.7	155
176	Dimerization of mono-ruthenium substituted \hat{l} ±-Keggin-type tungstosilicate $[\hat{l}$ ±-SiW11O39RullI(H2O)]5 \hat{a} ^'to $\hat{A}\mu$ -oxo-bridged dimer in aqueous solution: synthesis, structure, and redox studies. Dalton Transactions, 2007, , 2833-2838.	3.3	51
177	Immobilization of nanofibrous metal oxides on microfibers: A macrostructured catalyst system functionalized with nanoscale fibrous metal oxides. Chemical Communications, 2007, , 4047.	4.1	25
178	Vapour phase hydrogenation of phenol over Pd/C catalysts: A relationship between dispersion, metal area and hydrogenation activity. Catalysis Communications, 2007, 8, 471-477.	3.3	85
179	Crystalline Mo3VOx Mixed-Metal-Oxide Catalyst with Trigonal Symmetry. Angewandte Chemie - International Edition, 2007, 46, 1493-1496.	13.8	109
180	Chapter 29. Structural Organization of Catalytic Functions in Mo-Based Selective Oxidation Catalysts. , 2007, , 507-518.		0

#	Article	IF	CITATIONS
181	Shape-Controlled Synthesis of ZrO2, Al2O3, and SiO2 Nanotubes Using Carbon Nanofibers as Templates. Chemistry of Materials, 2006, 18, 4981-4983.	6.7	108
182	Structural characterization of mono-ruthenium substituted Keggin-type silicotungstates. Dalton Transactions, 2006, , 4271.	3.3	84
183	Three-dimensionally Ordered Macroporous Mixed Iron Oxide; Preparation and Structural Characterization of Inverse Opals with Skeleton Structure. Chemistry Letters, 2006, 35, 480-481.	1.3	23
184	Facile Procedure To Prepare Three-Dimensionally Ordered Macroporous (3DOM) Perovskite-type Mixed Metal Oxides by Colloidal Crystal Templating Method. Chemistry of Materials, 2005, 17, 3546-3551.	6.7	142
185	A Novel Isopolytungstate Functionalized by Ruthenium: [HW9O33Rull2(dmso)6]7 ChemInform, 2004, 35, no.	0.0	O
186	A novel isopolytungstate functionalized by ruthenium: [HW9O33Rull2(dmso)6]7?. Chemical Communications, 2004, , 1420.	4.1	59
187	Synthesis and electrochemical behavior of [SiW11O39RullI(H2O)]5– and its oxo-bridged dimeric complex [SiW11O39RulVORullISiW11O39]11–. Dalton Transactions, 2003, , 659-664.	3.3	70
188	Prospects for Rational Assembly of Composite Polyoxometalates. Nanostructure Science and Technology, 2002, , 17-26.	0.1	1
189	Formation of 1 \hat{a}^{η} 1 and 2 \hat{a}^{η} 2 complexes of Ce(iii) with the heteropolytung state anion $\hat{l}\pm 2$ -[P2W17O61]10 \hat{a}^{γ} , a their interaction with proline. The structure of [Ce2(P2W17O61)2(H2O)8]14 \hat{a}^{γ} . Dalton Transactions RSC, 2002, , 63.	and 2.3	47
190	Synthesis and Characterization of Copper-, Zinc-, Manganese-, and Cobalt-Substituted Dimeric Heteropolyanions, [(α-XW9O33)2M3(H2O)3]n- (n = 12, X = AsIII, SbIII, M = Cu2+, Zn2+; n = 10, X = SeIV, TeIV, M) _{4:0} ETQq() 0 0 rgBT /0 246
191	4742-4749. Chiral Polyoxotungstates. 1. Stereoselective Interaction of Amino Acids with Enantiomers of [CellI(α1-P2W17O61)(H2O)x]7 The Structure ofdl-[Ce2(H2O)8(P2W17O61)2]14 Inorganic Chemistry, 2001, 40, 2715-2719.	4.0	173
192	Formation of Unsymmetrical Polyoxotungstates via Transfer of Polyoxometalate Building Blocks. NMR Evidence Supports the Kinetic Stability of the Pentatungstate Anion, [W5O18]6-, in Aqueous Solution. Journal of the American Chemical Society, 2001, 123, 2087-2088.	13.7	31
193	Controlled Assembly of Polyoxometalate Chains from Lacunary Building Blocks and Lanthanide-Cation Linkers. Angewandte Chemie - International Edition, 2000, 39, 2914-2916.	13.8	339
194	Electrochemical oxidation of (R)-4-hydroxy-2-pyrrolidone: A key building block for stereoselective N-acyliminium ion coupling reactions. Tetrahedron, 1999, 55, 14407-14420.	1.9	31
195	Co-solvent Effects on the Redox Potentials of Manganese-substituted alpha-Keggin-type Silicon Polyoxotungstate K6SiW11O39Mn(H2O): First Electrochemical Generation of the Manganese(V) Redox System in an Aqueous Environment Acta Chemica Scandinavica, 1999, 53, 837-841.	0.7	14
196	Electrochemical Properties of Polyoxometalates as Electrocatalysts. Chemical Reviews, 1998, 98, 219-238.	47.7	1,544
197	A [3+2] Annulation Procedure for the Synthesis of Bicyclic Methylenepyrrolidines. Synlett, 1997, 1, 95-96.	1.8	4
198	Investigation of the manganese-substituted $\hat{l}\pm$ -Keggin-heteropolyanion K6SiW11O39Mn(H2O) by cyclic voltammetry and its application as oxidation catalyst. Journal of Molecular Catalysis A, 1996, 114, 221-228.	4.8	42

#	Article	IF	Citations
199	Palladium-Catalyzed Carbonylative [2 + 2] Cycloaddition for the Stereoselective Synthesis of Either cis- or trans-3-Alkenyl .betaLactams. Journal of Organic Chemistry, 1994, 59, 3040-3046.	3.2	54
200	Carbonylative [2+2] cycloaddition for the construction of \hat{l}^2 -lactam skeleton with palladium catalyst. Tetrahedron Letters, 1993, 34, 6553-6556.	1.4	45
201	Syntheses of chromones and quinolones via pd-catalyzed carbonylation of o-iodophenols and anilines in the presence of acetylenes. Tetrahedron, 1993, 49, 6773-6784.	1.9	137
202	Palladium-Catalyzed Facile Access to 2-Aryl-4-dialkylaminoquinolines. Synlett, 1992, 1992, 513-514.	1.8	35
203	Organic Iodide Aided Carbonylation of Terminal Acetylenes with Palladium Catalyst. Chemistry Letters, 1991, 20, 1673-1676.	1.3	54
204	Poly(triethylene glycol methyl ether methacrylate) hydrogel as a carrier of phosphotungstic acid for acid catalytic reaction in water. Materials Advances, 0, , .	5.4	1
205	Synthesis,Âcharacterization, and multielectron redox propertyÂof pyridineâ€coordinated tetraâ€Ruâ€oxo		