Masahiro Sadakane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1104942/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical Properties of Polyoxometalates as Electrocatalysts. Chemical Reviews, 1998, 98, 219-238.	47.7	1,544
2	Controlled Assembly of Polyoxometalate Chains from Lacunary Building Blocks and Lanthanide-Cation Linkers. Angewandte Chemie - International Edition, 2000, 39, 2914-2916.	13.8	339
3	Synthesis and Characterization of Copper-, Zinc-, Manganese-, and Cobalt-Substituted Dimeric Heteropolyanions, [(α-XW9O33)2M3(H2O)3]n- (n = 12, X = AsIII, SbIII, M = Cu2+, Zn2+; n = 10, X = SeIV, TeIV, M) Ti ETQq 4:0	l 1 0.78431 246
4	4742-4749. Chiral Polyoxotungstates. 1. Stereoselective Interaction of Amino Acids with Enantiomers of [Celll(α1-P2W17O61)(H2O)x]7 The Structure ofdl-[Ce2(H2O)8(P2W17O61)2]14 Inorganic Chemistry, 2001, 40, 2715-2719.	4.0	173
5	Facile Preparation of Three-Dimensionally Ordered Macroporous Alumina, Iron Oxide, Chromium Oxide, Manganese Oxide, and Their Mixed-Metal Oxides with High Porosity. Chemistry of Materials, 2007, 19, 5779-5785.	6.7	155
6	Facile Procedure To Prepare Three-Dimensionally Ordered Macroporous (3DOM) Perovskite-type Mixed Metal Oxides by Colloidal Crystal Templating Method. Chemistry of Materials, 2005, 17, 3546-3551.	6.7	142
7	Syntheses of chromones and quinolones via pd-catalyzed carbonylation of o-iodophenols and anilines in the presence of acetylenes. Tetrahedron, 1993, 49, 6773-6784.	1.9	137
8	Preparation of 3-D ordered macroporous tungsten oxides and nano-crystalline particulate tungsten oxides using a colloidal crystal template method, and their structural characterization and application as photocatalysts under visible light irradiation. Journal of Materials Chemistry, 2010, 20, 1811.	6.7	132
9	Crystalline Mo3VOx Mixed-Metal-Oxide Catalyst with Trigonal Symmetry. Angewandte Chemie - International Edition, 2007, 46, 1493-1496.	13.8	109
10	Shape-Controlled Synthesis of ZrO2, Al2O3, and SiO2 Nanotubes Using Carbon Nanofibers as Templates. Chemistry of Materials, 2006, 18, 4981-4983.	6.7	108
11	Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous and Mesoporous Materials, 2011, 144, 91-96.	4.4	107
12	Molybdenum–Vanadiumâ€Based Molecular Sieves with Microchannels of Sevenâ€Membered Rings of Corner‧haring Metal Oxide Octahedra. Angewandte Chemie - International Edition, 2008, 47, 2493-2496.	13.8	102
13	Preparation of nano-structured crystalline tungsten(vi) oxide and enhanced photocatalytic activity for decomposition of organic compounds under visible light irradiation. Chemical Communications, 2008, , 6552.	4.1	101
14	Synthesis of Orthorhombic Moâ€Vâ€5b Oxide Species by Assembly of Pentagonal Mo ₆ O ₂₁ Polyoxometalate Building Blocks. Angewandte Chemie - International Edition, 2009, 48, 3782-3786.	13.8	96
15	Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NO _x with NH ₃ . Journal of Materials Chemistry A, 2015, 3, 857-865.	10.3	95
16	Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution. Microporous and Mesoporous Materials, 2012, 158, 141-147.	4.4	90
17	An orthorhombic Mo ₃ VO _x catalyst most active for oxidative dehydrogenation of ethane among related complex metal oxides. Catalysis Science and Technology, 2013, 3, 380-387.	4.1	90
18	High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 2013, 56, 183-197.	0.6	87

#	Article	IF	CITATIONS
19	Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite. Microporous and Mesoporous Materials, 2016, 225, 524-533.	4.4	86
20	Vapour phase hydrogenation of phenol over Pd/C catalysts: A relationship between dispersion, metal area and hydrogenation activity. Catalysis Communications, 2007, 8, 471-477.	3.3	85
21	Structural characterization of mono-ruthenium substituted Keggin-type silicotungstates. Dalton Transactions, 2006, , 4271.	3.3	84
22	Conversion of ethanol to propylene over HZSM-5 type zeolites containing alkaline earth metals. Applied Catalysis A: General, 2010, 383, 89-95.	4.3	81
23	Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous and Mesoporous Materials, 2012, 158, 117-122.	4.4	71
24	Synthesis and electrochemical behavior of [SiW11O39RuIII(H2O)]5– and its oxo-bridged dimeric complex [SiW11O39RuIVORuIIISiW11O39]11–. Dalton Transactions, 2003, , 659-664.	3.3	70
25	Three-Dimensionally Ordered Macroporous (3DOM) Materials of Spinel-Type Mixed Iron Oxides. Synthesis, Structural Characterization, and Formation Mechanism of Inverse Opals with a Skeleton Structure. Bulletin of the Chemical Society of Japan, 2007, 80, 677-685.	3.2	68
26	Synthesis and Characterization of Three-Dimensionally Ordered Macroporous (3DOM) Tungsten Carbide: Application to Direct Methanol Fuel Cells. Chemistry of Materials, 2010, 22, 966-973.	6.7	68
27	Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 3020-3026.	0.9	67
28	Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene. Applied Catalysis A: General, 2011, 399, 262-267.	4.3	66
29	Tetrahedral Connection of ε-Keggin-type Polyoxometalates To Form an All-Inorganic Octahedral Molecular Sieve with an Intrinsic 3D Pore System. Inorganic Chemistry, 2014, 53, 903-911.	4.0	65
30	Influence of seeding on FAU–â^—BEA interzeolite conversions. Microporous and Mesoporous Materials, 2011, 142, 161-167.	4.4	64
31	Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum–iron-oxide LaFeO3 with tunable pore diameters: High porosity and photonic property. Journal of Solid State Chemistry, 2010, 183, 1365-1371.	2.9	61
32	Efficient and Selective Photocatalytic Cyclohexane Oxidation on a Layered Titanate Modified with Iron Oxide under Sunlight and CO ₂ Atmosphere. ACS Catalysis, 2012, 2, 1910-1915.	11.2	61
33	A novel isopolytungstate functionalized by ruthenium: [HW9O33Rull2(dmso)6]7?. Chemical Communications, 2004, , 1420.	4.1	59
34	Sunlight-induced efficient and selective photocatalytic benzene oxidation on TiO2-supported gold nanoparticles under CO2 atmosphere. Chemical Communications, 2011, 47, 11531.	4.1	55
35	Organic Iodide Aided Carbonylation of Terminal Acetylenes with Palladium Catalyst. Chemistry Letters, 1991, 20, 1673-1676.	1.3	54
36	Palladium-Catalyzed Carbonylative [2 + 2] Cycloaddition for the Stereoselective Synthesis of Either cis- or trans-3-Alkenyl .betaLactams. Journal of Organic Chemistry, 1994, 59, 3040-3046.	3.2	54

#	Article	IF	CITATIONS
37	Atomic-level imaging of Mo-V-O complex oxide phase intergrowth, grain boundaries, and defects using HAADF-STEM. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6152-6157.	7.1	52
38	Facile Synthesis of AEI Zeolites by Hydrothermal Conversion of FAU Zeolites in the Presence of Tetraethylphosphonium Cations. Chemistry Letters, 2014, 43, 302-304.	1.3	52
39	Dimerization of mono-ruthenium substituted α-Keggin-type tungstosilicate [α-SiW11O39RuIII(H2O)]5â~'to µ-oxo-bridged dimer in aqueous solution: synthesis, structure, and redox studies. Dalton Transactions, 2007, , 2833-2838.	3.3	51
40	Synthesis of phosphorus-modified small-pore zeolites utilizing tetraalkyl phosphonium cations as both structure-directing and phosphorous modification agents. Microporous and Mesoporous Materials, 2016, 223, 129-139.	4.4	51
41	Ultrathin inorganic molecular nanowire based on polyoxometalates. Nature Communications, 2015, 6, 7731.	12.8	50
42	Atomic-Scale Investigation of Two-Component MoVO Complex Oxide Catalysts Using Aberration-Corrected High-Angle Annular Dark-Field Imaging. Chemistry of Materials, 2010, 22, 2033-2040.	6.7	49
43	Redox Treatment of Orthorhombic Mo ₂₉ V ₁₁ O ₁₁₂ and Relationships between Crystal Structure, Microporosity and Catalytic Performance for Selective Oxidation of Ethane. Journal of Physical Chemistry C, 2015, 119, 7195-7206.	3.1	49
44	Functionalization of Layered Titanates. Journal of Nanoscience and Nanotechnology, 2014, 14, 2135-2147.	0.9	48
45	Preparation, Structural Characterization, and Ion-Exchange Properties of Two New Zeolite-like 3D Frameworks Constructed by ε-Keggin-Type Polyoxometalates with Binding Metal Ions, H _{11.4} [ZnMo ₁₂ O ₄₀ Zn ₂] ^{1.5â€"} and H _{7.5} [Mn _{0.2} Mo ₁₂ O ₄₀ 4040Mn ₂₂] ^{2.1â€"<td>4.0 >.</td><td>48</td>}	4.0 >.	48
46	Formation of 1 â^¶ 1 and 2 â^¶ 2 complexes of Ce(iii) with the heteropolytungstate anion α2-[P2W17O61]10â'', their interaction with proline. The structure of [Ce2(P2W17O61)2(H2O)8]14â''. Dalton Transactions RSC, 2002, , 63.	and 2.3	47
47	Carbonyl–ruthenium substituted α-Keggin-tungstosilicate, [α-SiW11O39Rull(CO)]6â^: synthesis, structure, redox studies and reactivity. Dalton Transactions, 2008, , 6692.	3.3	47
48	Carbonylative [2+2] cycloaddition for the construction of β-lactam skeleton with palladium catalyst. Tetrahedron Letters, 1993, 34, 6553-6556.	1.4	45
49	Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. Journal of Crystal Growth, 2011, 325, 96-100.	1.5	45
50	Important Property of Polymer Spheres for the Preparation of Three-Dimensionally Ordered Macroporous (3DOM) Metal Oxides by the Ethylene Glycol Method: The Glass-Transition Temperature. Langmuir, 2012, 28, 17766-17770.	3.5	43
51	Two New Sandwich-Type Manganese {Mn5}-Substituted Polyoxotungstates: Syntheses, Crystal Structures, Electrochemistry, and Magnetic Properties. Inorganic Chemistry, 2017, 56, 8759-8767.	4.0	43
52	Investigation of the manganese-substituted α-Keggin-heteropolyanion K6SiW11O39Mn(H2O) by cyclic voltammetry and its application as oxidation catalyst. Journal of Molecular Catalysis A, 1996, 114, 221-228.	4.8	42
53	Synthesis of high-silica offretite by the interzeolite conversion method. Materials Research Bulletin, 2010, 45, 646-650.	5.2	42
54	Redox tunable reversible molecular sieves: orthorhombic molybdenum vanadium oxide. Chemical Communications, 2011, 47, 10812.	4.1	40

#	Article	IF	CITATIONS
55	Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 2012, 22, 13682.	6.7	39
56	Selective carbon dioxide adsorption of ε-Keggin-type zincomolybdate-based purely inorganic 3D frameworks. Journal of Materials Chemistry A, 2015, 3, 746-755.	10.3	39
57	Hydrothermal conversion of FAU and â^—BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals. Microporous and Mesoporous Materials, 2014, 196, 254-260.	4.4	38
58	A supramolecular photocatalyst composed of a polyoxometalate and a photosensitizing water-soluble porphyrin diacid for the oxidation of organic substrates in water. Green Chemistry, 2018, 20, 1975-1980.	9.0	38
59	One-pot Synthesis of Phosphorus-modified AEI Zeolites Derived by the Dual-template Method as a Durable Catalyst with Enhanced Thermal/Hydrothermal Stability for Selective Catalytic Reduction of NO <i>_x</i> by NH ₃ . Chemistry Letters, 2016, 45, 122-124.	1.3	36
60	Palladium-Catalyzed Facile Access to 2-Aryl-4-dialkylaminoquinolines. Synlett, 1992, 1992, 513-514.	1.8	35
61	Assembly of a Pentagonal Polyoxomolybdate Building Block, [Mo6O21]6-, into Crystalline MoV Oxides. European Journal of Inorganic Chemistry, 2013, 2013, 1731-1736.	2.0	35
62	Synthesis of Novel Orthorhombic Mo and V Based Complex Oxides Coordinating Alkylammonium Cation in Its Heptagonal Channel and Their Application as a Catalyst. Chemistry of Materials, 2013, 25, 2211-2219.	6.7	34
63	Thermally stable nanosized LEV zeolites synthesized by hydrothermal conversion of FAU zeolites in the presence of N,N-dimethylpiperidinium cations. Journal of Materials Chemistry A, 2017, 5, 19245-19254.	10.3	34
64	Nano-structuring of complex metal oxides for catalytic oxidation. Catalysis Today, 2008, 132, 2-8.	4.4	33
65	Hydrothermal and solid-state transformation of ruthenium-supported Keggin-type heteropolytungstates [XW11O39{Ru(ii)(benzene)(H2O)}]nâ^' (X = P (n = 5), Si (n = 6), Ge (n = 6)) to ruthenium-substituted Keggin-type heteropolytungstates. Dalton Transactions, 2012, 41, 9901.	3.3	33
66	Conversion of ethanol to propylene over HZSM-5(Ga) co-modified with lanthanum and phosphorous. Applied Catalysis A: General, 2012, 417-418, 137-144.	4.3	33
67	Phosphorus modified small-pore zeolites and their catalytic performances in ethanol conversion and NH3-SCR reactions. Applied Catalysis A: General, 2019, 575, 204-213.	4.3	33
68	Synthesis of titanated chabazite with enhanced thermal stability by hydrothermal conversion of titanated faujasite. Microporous and Mesoporous Materials, 2015, 215, 58-66.	4.4	32
69	Electrochemical oxidation of (R)-4-hydroxy-2-pyrrolidone: A key building block for stereoselective N-acyliminium ion coupling reactions. Tetrahedron, 1999, 55, 14407-14420.	1.9	31
70	Formation of Unsymmetrical Polyoxotungstates via Transfer of Polyoxometalate Building Blocks. NMR Evidence Supports the Kinetic Stability of the Pentatungstate Anion, [W5O18]6-, in Aqueous Solution. Journal of the American Chemical Society, 2001, 123, 2087-2088.	13.7	31
71	Preparation and StructuralCharacterization of Ru ^{il} a€DMSO and Ru ^{III} â€DMSOâ€substituted αâ€Kegginâ€type Phosphotungstates, [PW ₁₁ O ₃₉ Ru ^{II} DMSO] ^{5–} and [PW ₁₁ O ₃₉ Ru ^{III} DMSO] ^{4–} , and Catalytic Activity for	1.2	31
72	Water Oxidation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1467-1474. Highly active and selective Ti-incorporated porous silica catalysts derived from grafting of titanium(<scp>iv</scp>)acetylacetonate. Journal of Materials Chemistry A, 2015, 3, 15280-15291.	10.3	30

#	Article	IF	CITATIONS
73	A zeolitic vanadotungstate family with structural diversity and ultrahigh porosity for catalysis. Nature Communications, 2018, 9, 3789.	12.8	30
74	Formation Pathway of AEI Zeolites as a Basis for a Streamlined Synthesis. Chemistry of Materials, 2020, 32, 60-74.	6.7	30
75	Oxidation Catalysis over Solid-State Keggin-Type Phosphomolybdic Acid with Oxygen Defects. Journal of the American Chemical Society, 2022, 144, 7693-7708.	13.7	30
76	FAU–LEV interzeolite conversion in fluoride media. Microporous and Mesoporous Materials, 2011, 138, 32-39.	4.4	29
77	Effective and Selective Bisphenol A Synthesis on a Layered Silicate with Spatially Arranged Sulfonic Acid. ACS Applied Materials & Interfaces, 2012, 4, 2186-2191.	8.0	29
78	Design of Layered Silicate by Grafting with Metal Acetylacetonate for High Activity and Chemoselectivity in Photooxidation of Cyclohexane. ACS Applied Materials & Interfaces, 2014, 6, 4616-4621.	8.0	28
79	Highly efficient and selective sunlight-induced photocatalytic oxidation of cyclohexane on an eco-catalyst under a CO2 atmosphere. Green Chemistry, 2012, 14, 1264.	9.0	27
80	Stabilization of Highâ€Valence Ruthenium with Silicotungstate Ligands: Preparation, Structural Characterization, and Redox Studies of Ruthenium(III)â€Substituted αâ€Kegginâ€Type Silicotungstates with Pyridine Ligands, [SiW ₁₁ O ₃₉ Ru ^{III} (Py)] ^{5â^'} . Chemistry - an Asian Journal. 2012. 7, 1331-1339.	3.3	27
81	Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion. Angewandte Chemie - International Edition, 2016, 55, 10234-10238.	13.8	27
82	Incorporation of various heterometal atoms in CHA zeolites by hydrothermal conversion of FAU zeolite and their performance for selective catalytic reduction of NO x with ammonia. Microporous and Mesoporous Materials, 2017, 246, 89-101.	4.4	27
83	Ternary modified TiO2 as a simple and efficient photocatalyst for green organic synthesis. Chemical Communications, 2013, 49, 3652.	4.1	26
84	Immobilization of nanofibrous metal oxides on microfibers: A macrostructured catalyst system functionalized with nanoscale fibrous metal oxides. Chemical Communications, 2007, , 4047.	4.1	25
85	Alpha and beta isomers of tetrahafnium(iv) containing decatungstosilicates, [Hf4(OH)6(CH3COO)2(x-SiW10O37)2]12â^' (x = α, I²). Dalton Transactions, 2011, 40, 2920.	3.3	25
86	Highly Active Layered Titanosilicate Catalyst with High Surface Density of Isolated Titanium on the Accessible Interlayer Surface. ChemCatChem, 2018, 10, 2536-2540.	3.7	25
87	Ultrahigh Proton Conduction via Extended Hydrogen-Bonding Network in a Preyssler-Type Polyoxometalate-Based Framework Functionalized with a Lanthanide Ion. ACS Applied Materials & Interfaces, 2021, 13, 19138-19147.	8.0	25
88	Facile preparation of SBA-15-supported niobic acid (Nb2O5•nH2O) catalyst and its catalytic activity. Applied Catalysis A: General, 2009, 365, 261-267.	4.3	24
89	Precisely designed layered silicate as an effective and highly selective CO2 adsorbent. Chemical Communications, 2013, 49, 9027.	4.1	24
90	Synthesis of Crystalline Microporous Mo–V–Bi Oxide for Selective (Amm)Oxidation of Light Alkanes. Chemistry of Materials, 2017, 29, 2939-2950.	6.7	24

#	Article	IF	CITATIONS
91	Three-dimensionally Ordered Macroporous Mixed Iron Oxide; Preparation and Structural Characterization of Inverse Opals with Skeleton Structure. Chemistry Letters, 2006, 35, 480-481.	1.3	23
92	Effects of Au Loading and CO ₂ Addition on Photocatalytic Selective Phenol Oxidation over TiO ₂ ‣upported Au Nanoparticles. ChemCatChem, 2013, 5, 766-773.	3.7	23
93	Redox-Active Zeolitic Transition Metal Oxides Based on ε-Keggin Units for Selective Oxidation. Inorganic Chemistry, 2019, 58, 6283-6293.	4.0	23
94	Synthesis and characteristics of novel layered silicate HUS-7 using benzyltrimethylammonium hydroxide and its unique and selective phenol adsorption behavior. Journal of Materials Chemistry A, 2014, 2, 3372.	10.3	22
95	Synthesis of phosphorus-modified AFX zeolite using a dual-template method with tetraethylphosphonium hydroxide as phosphorus modification agent. Microporous and Mesoporous Materials, 2018, 267, 192-197.	4.4	22
96	Photocatalytic Activation of C–H Bonds by Spatially Controlled Chlorine and Titanium on the Silicate Layer. ACS Catalysis, 2019, 9, 5742-5751.	11.2	22
97	Influence of starting zeolite on synthesis of RUT type zeolite by interzeolite conversion method. Journal of Crystal Growth, 2011, 314, 274-278.	1.5	21
98	Structure and electrochemical activity of WOx-supported PtRu catalyst using three-dimensionally ordered macroporous WO3 as the template. Journal of Power Sources, 2013, 241, 728-735.	7.8	21
99	High-quality synthesis of a nanosized CHA zeolite by a combination of a starting FAU zeolite and aluminum sources. Dalton Transactions, 2020, 49, 9972-9982.	3.3	21
100	Determination of I±-Keggin structure of [GeW ₁₁ O ₃₉ Ru ^{III} (H ₂ O)] ^{5â^'} . Reaction of [GeW ₁₁ O ₃₉ Ru ^{III} (H ₂ O)] ^{5â^'} with dimethyl sulfoxide to form [GeW ₁₁ O ₃₉ Ru _{Ru^{III}(dmso)]^{5â^'}and their}	3.3	20
101	structural characterization. Dalton, Fransactions, 2013, 42, 2540-2546. Preparation and Characterization of Preysslea€type Phosphotungstic Acid, H _{15–<i>n</i>>} [P ₅ W ₃₀ O ₁₁₀ <i>Mⁿ</i> + with Different Encapsulated Cations (<i>M</i> >> Acid Catalyst Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1314-1321.], 1.2	20
102	Cation Effect on Formation of Preysslerâ€type 30â€Tungstoâ€5â€phosphate: Enhanced Yield of Naâ€encapsulate Derivative and Direct Synthesis of Ca―and Biâ€Encapsulated Derivatives. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2015, 641, 2670-2676.	d 1.2	20
103	Design of Microporous Material HUS-10 with Tunable Hydrophilicity, Molecular Sieving, and CO ₂ Adsorption Ability Derived from Interlayer Silylation of Layered Silicate HUS-2. ACS Applied Materials & Interfaces, 2015, 7, 24360-24369.	8.0	20
104	Zeolitic Octahedral Metal Oxides with Ultra‧mall Micropores for C ₂ Hydrocarbon Separation. Angewandte Chemie - International Edition, 2021, 60, 18328-18334.	13.8	20
105	Preparation of Crystalline Tungsten Oxide Nanorods with Enhanced Photocatalytic Activity under Visible Light Irradiation. Chemistry Letters, 2011, 40, 443-445.	1.3	19
106	Effect of Structure-Directing Agents on FAU–CHA Interzeolite Conversion and Preparation of High Pervaporation Performance CHA Zeolite Membranes for the Dehydration of Acetic Acid Solution. Bulletin of the Chemical Society of Japan, 2013, 86, 1333-1340.	3.2	19
107	Investigation of the formation process of zeolite-like 3D frameworks constructed with Îμ-Keggin-type polyoxovanadomolybdates with binding bismuth ions and preparation of a nano-crystal. Dalton Transactions, 2014, 43, 13584.	3.3	19
108	Lanthanoid Template Isolation of the α-1,5 Isomer of Dicobalt(II)-Substituted Keggin Type Phosphotungstates: Syntheses, Characterization, and Magnetic Properties. Inorganic Chemistry, 2016, 55, 8292-8300.	4.0	19

#	Article	IF	CITATIONS
109	Thermal Stability and Acidic Strength of Preysslerâ€Type Phosphotungstic Acid, H ₁₄ [P ₅ W ₃₀ O ₁₁₀ Na] and It's Catalytic Activity for Hydrolysis of Alkyl Acetates. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 2120-2124.	1.2	18
110	Effect of SnO[sub 2] Deposition Sequence in SnO[sub 2]-Modified PtRu/C Catalyst Preparation on Catalytic Activity for Methanol Electro-Oxidation. Journal of the Electrochemical Society, 2009, 156, B862.	2.9	17
111	Preparation and formation mechanism of three-dimensionally ordered macroporous (3DOM) MgO, MgSO4, CaCO3, and SrCO3, and photonic stop band properties of 3DOM CaCO3. Journal of Solid State Chemistry, 2011, 184, 2299-2305.	2.9	17
112	Molecular recognitive adsorption of aqueous tetramethylammonium on the organic derivative of Hiroshima University Silicate-1 with a silane coupling reagent. Chemical Communications, 2012, 48, 7073.	4.1	17
113	Synthesis of Vanadiumâ€Incorporated, Polyoxometalateâ€Based Open Frameworks and Their Applications for Cathodeâ€Active Materials. European Journal of Inorganic Chemistry, 2016, 2016, 1242-1250.	2.0	17
114	Preparation of Preyssler-type Phosphotungstate with One Central Potassium Cation and Potassium Cation Migration into the Preyssler Molecule to form Di-Potassium-Encapsulated Derivative. ACS Omega, 2018, 3, 2363-2373.	3.5	17
115	Preparation and Redox Studies of î± ₁ - and î± ₂ -lsomers of Mono-Ru-Substituted Dawson-type Phosphotungstates with a DMSO Ligand: [î± ₁ /î± ₂ -P ₂ W ₁₇ O ₆₁ Ru ^{II} (DMSO)]< Inorganic Chemistry, 2014, 53, 3526-3539.	s4 <u>0</u> sup>8–	< 16 up>.
116	Preparation of α ₁ - and α ₂ -isomers of mono-Ru-substituted Dawson-type phosphotungstates with an aqua ligand and comparison of their redox potentials, catalytic activities, and thermal stabilities with Keggin-type derivatives. Dalton Transactions, 2016, 45, 3715-3726.	3.3	16
117	Design of a highly active base catalyst through utilizing organic-solvent-treated layered silicate Hiroshima University Silicates. Dalton Transactions, 2017, 46, 7441-7450.	3.3	16
118	Zeolite hydrothermal conversion in the presence of various cyclic alkylammonium cations and synthesis of nanosized BEA and MFI zeolites. Microporous and Mesoporous Materials, 2019, 277, 115-123.	4.4	16
119	Preparation of Mixed Oxide Nanotubes by Precursor-accumulation on Carbon Nanofiber Templates. Chemistry Letters, 2007, 36, 258-259.	1.3	15
120	An efficient synthesis of $\hat{l}\pm$ -acyloxyacrylate esters as candidate monomers for bio-based polymers by heteropolyacid-catalyzed acylation of pyruvate esters. Green Chemistry, 2009, 11, 1666.	9.0	15
121	Stepwise Gel Preparation for High-Quality CHA Zeolite Synthesis: AÂCommon Tool for Synthesis Diversification. Crystal Growth and Design, 2018, 18, 5652-5662.	3.0	15
122	A Self-Assembled Heterometallic {Co7 -Ho1 } Nanocluster: 3d-4f Trimeric Keggin-Type Silicotungstate [HoCo7 Si3 W29 O108 (OH)5 (H2 O)4]18 - and its Catalytic and Magnetic Applications. European Journal of Inorganic Chemistry, 2019, 2019, 430-436.	2.0	15
123	Organoruthenium ontaining Heteropolyâ€23â€Tungstate Family [{Ru(L)} ₂ (αâ€XW ₁₁ O ₃₉) ₂ WO ₂] <i>^{mâ€ (L = benzene, <i>p</i>â€cymene; X = Ge^{IV}, Si^{IV}, <i>m</i> = 10; B^{III},) Tj ETC}</i>	";{ sup>; 2q1 1 0.78	′i≥ 34314 rgBT
124	Recreation of BrÃ,nsted acid sites in phosphorus-modified HZSM-5(Ga) by modification with various metal cations. Applied Catalysis A: General, 2014, 481, 161-168.	4.3	14
125	Synthesis, Characterization, and Structure of a Reduced Preyssler-type Polyoxometalate. Chemistry Letters, 2017, 46, 602-604.	1.3	14
126	Structural Dependence of the Effects of Polyoxometalates on Liposome Collapse Activity. Chemistry Letters, 2017, 46, 533-535.	1.3	14

#	Article	IF	CITATIONS
127	Celebrating Polyoxometalate Chemistry. European Journal of Inorganic Chemistry, 2019, 2019, 340-342.	2.0	14
128	Co-solvent Effects on the Redox Potentials of Manganese-substituted alpha-Keggin-type Silicon Polyoxotungstate K6SiW11O39Mn(H2O): First Electrochemical Generation of the Manganese(V) Redox System in an Aqueous Environment Acta Chemica Scandinavica, 1999, 53, 837-841.	0.7	14
129	Immobilization of nanofibrous A- or B-site substituted LaMnO3 perovskite-type oxides on macroscopic fiber with carbon nanofibers templates. Materials Research Bulletin, 2010, 45, 1330-1333.	5.2	13
130	Characterization of layered silicate HUS-5 and formation of novel nanoporous silica through transformation of HUS-5 ion-exchanged with alkylammonium cations. Journal of Materials Chemistry A, 2013, 1, 9680.	10.3	13
131	New crystalline complex metal oxides created by unit-synthesis and their catalysis based on porous and redox properties. Faraday Discussions, 2016, 188, 81-98.	3.2	13
132	Encapsulation of Two Potassium Cations in Preyssler-Type Phosphotungstates: Preparation, Structural Characterization, Thermal Stability, Activity as an Acid Catalyst, and HAADF-STEM Images. Inorganic Chemistry, 2016, 55, 11583-11592.	4.0	13
133	Synthesis of ε-Keggin-Type Cobaltomolybdate-Based 3D Framework Material and Characterization Using Atomic-Scale HAADF-STEM and XANES. Inorganic Chemistry, 2017, 56, 2042-2049.	4.0	13
134	Ultrathin Anionic Tungstophosphite Molecular Wire with Tunable Hydrophilicity and Catalytic Activity for Selective Epoxidation in Organic Media. Chemistry - A European Journal, 2017, 23, 17497-17503.	3.3	13
135	Nano-Scale Hydroxyapatite Coating on Macroscopic Silica Fiber Using Carbon Nanofibers as Templates. Bulletin of the Chemical Society of Japan, 2008, 81, 380-386.	3.2	12
136	Preparation of tetrabutylammonium salt of a mono-Ru(iii)-substituted α-Keggin-type silicotungstate with a 4,4′-bipyridine ligand and its electrochemical behaviour in organic solvents. Dalton Transactions, 2013, 42, 7190.	3.3	12
137	Hydrothermal Conversion of Titanated FAU to AEI Zeolite and Its Enhanced Catalytic Performance for NO _{<i>x</i>} Reduction. Advanced Porous Materials, 2016, 4, 62-72.	0.3	12
138	Preparation of Well-Alloyed PtRu/C Catalyst by Sequential Mixing of the Precursors in a Polyol Method. Journal of the Electrochemical Society, 2009, 156, B1348.	2.9	11
139	Influence of structural differences and acidic properties of phosphotungstic acids on their catalytic performance for acylation of pyruvate ester to α-acyloxyacrylate ester. Catalysis Today, 2011, 164, 107-111.	4.4	11
140	The Assembly of an Allâ€Inorganic Porous Soft Framework from Metal Oxide Molecular Nanowires. Chemistry - A European Journal, 2017, 23, 1972-1980.	3.3	11
141	Metal-substituted tungstosulfates with Keggin structure: synthesis and characterization. Dalton Transactions, 2020, 49, 2766-2770.	3.3	11
142	Conversion of Ethanol into Propylene over TON Type Zeolite. Journal of the Japan Petroleum Institute, 2013, 56, 22-31.	0.6	10
143	Incorporation of Heteropolyacids into Layered Silicate HUS-2 Grafted with 3-(Aminopropyl)triethoxysilane. Bulletin of the Chemical Society of Japan, 2014, 87, 1379-1385.	3.2	10
144	An Efficient Way to Synthesize Hiroshima University Silicate-1 (HUS-1) and the Selective Adsorption Property of Ni2+ from Seawater. Bulletin of the Chemical Society of Japan, 2014, 87, 160-166.	3.2	10

#	Article	IF	CITATIONS
14	Preparation and Structural Characterization of Mono-Ru-Substituted α2-Dawson-Type Phosphotungstate with a Carbonyl Ligand and Other Ru(CO)-Substituted Heteropolytungstates. European Journal of Inorganic Chemistry, 2015, 2015, 2714-N2723.	2.0	10
14	Effective Factor on Catalysis of Niobium Oxide for Magnesium. ACS Omega, 2020, 5, 21906-21912.	3.5	10
14'	Sunlight-induced effective heterogeneous photocatalytic decomposition of aqueous organic pollutants to CO2 assisted by a CO2 sorbent, amine-containing mesoporous silica. Chemical Communications, 2012, 48, 5521.	4.1	9
14	First synthesis of SAPO molecular sieve with LTL-type structure by hydrothermal conversion of SAPO-37 with FAU-type structure. Microporous and Mesoporous Materials, 2013, 179, 224-230.	4.4	9
14	Synthesis and Structural Characterization of Isomers of Ru-Substituted Keggin-Type Germanotungstate with dmso Ligand. Journal of Cluster Science, 2014, 25, 755-770.	3.3	9
15	Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion. Angewandte Chemie, 2016, 128, 10390-10394.	2.0	9
15	Thermal Behavior, Crystal Structure, and Solid-State Transformation of Orthorhombic Mo–V Oxide under Nitrogen Flow or in Air. ACS Omega, 2019, 4, 13165-13171.	3.5	9
15	Preyssler-type phosphotungstate is a new family of negative-staining reagents for the TEM observation of viruses. Scientific Reports, 2022, 12, 7554.	3.3	9
15	Mesoporous silicas containing carboxylic acid: Preparation, thermal degradation, and catalytic performance. Applied Catalysis A: General, 2010, 372, 82-89.	4.3	8
154	Molecular Recognitive Adsorption of Aqueous Propionic Acid on Hiroshima University Silicate-2 (HUS-2). Chemistry Letters, 2013, 42, 244-246.	1.3	8
15	Synthesis of GME zeolite with high porosity by hydrothermal conversion of FAU zeolite using a dual-template method with tetraethylphosphonium and N,N-dimethyl-3,5-dimethylpiepridinium hydroxides. Journal of Porous Materials, 2019, 26, 1345-1352.	2.6	8
15	A Sandwich Complex of Bismuth Cation and Monoâ€Lacunary αâ€Kegginâ€Type Phosphotungstate: Preparatic and Structural Characterisation. European Journal of Inorganic Chemistry, 2019, 2019, 357-362.	ⁿ 2.0	8
15'	Facile synthesis of highly crystalline EMT zeolite by hydrothermal conversion of FAU zeolite in the presence of 1,1'-(1,4-butanediyl)bis(1-azonia-4-azabicyclo [2,2,2]octane) dihydroxide. Microporous and Mesoporous Materials, 2019, 274, 299-303.	4.4	8
15	Synthesis of crystalline molybdenum oxides based on a 1D molecular structure and their ion-exchange properties. New Journal of Chemistry, 2017, 41, 4503-4509.	2.8	7
15	Selfâ€Assembled Tetrameric Lanthanideâ€Containing Germanotungstates [(Ln 2 GeW 10 O 38) 4 (W 3 O 8) Tj Properties ChemistrySelect, 2019, 4, 12668-12675.	ETQq1 1 1.5	l 0.784314 rgi 7
16	Catalytic Activities of Various Niobium Oxides for Hydrogen Absorption/Desorption Reactions of Magnesium. ACS Omega, 2021, 6, 23564-23569.	3.5	7
16	Singleâ€Molecule Magnetic, Catalytic and Photoluminescence Properties of Heterometallic 3 d –4 f [Ln{PZn 2 W 10 O 38 (H 2 O) 2 } 2] 11â^' Tungstophosphate Nanoclusters. European Journal of Inorganic Chemistry, 2021, 2021, 3819.	2.0	7
16	Synthesis and characterization of carbonate-encapsulated ytterbium- and yttrium-containing polyoxotungstates. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 1355-1361.	0.5	7

#	Article	IF	CITATIONS
163	Nano-Scale Hydroxyapatite Formation on Silica Fiber by Using Carbon Nanofibers as Templates. Journal of Nanoscience and Nanotechnology, 2010, 10, 5431-5436.	0.9	6
164	Synthesis of single phase Ca-α-SiAlON using Y-type zeolite. Journal of the European Ceramic Society, 2010, 30, 1537-1541.	5.7	6
165	Building Block Synthesis of Crystalline Mo–V-based Oxides: Selective Oxidation Catalysts. Journal of the Japan Petroleum Institute, 2012, 55, 229-235.	0.6	6
166	High-Performance Cathode Based on Microporous Mo–V–Bi Oxide for Li Battery and Investigation by <i>Operando</i> X-ray Absorption Fine Structure. ACS Applied Materials & Interfaces, 2017, 9, 26052-26059.	8.0	6
167	Immobilizaion of Preyssler type heteropoly acids on siliceous mesporous supports and their catalytic activities in the dehydration of ethanol. Reaction Kinetics, Mechanisms and Catalysis, 2019, 128, 139-147.	1.7	6
168	Multi-dimensional Crystal Structuring of Complex Metal Oxide Catalysts of Group V and VI Elements by Unit-Assembling. Topics in Catalysis, 2019, 62, 1157-1168.	2.8	6
169	Structure and Thermal Transformations of Methylammonium Tungstate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1930-1937.	1.2	6
170	Synthesis of Phosphorus-Modified AFX Zeolite by the Hydrothermal Conversion of Tetraalkylphosphonium Hydroxide-Impregnated FAU Zeolite. Bulletin of the Chemical Society of Japan, 2021, 94, 1-7.	3.2	6
171	An efficient heteropolyacid catalyzed acylation of pyruvate esters to \hat{I}_{\pm} -acyloxyacrylate esters as potential candidate monomers for bio-based polymers. Chemical Communications, 2008, , 5239.	4.1	5
172	One-pot synthesis of microporous and mesoporous (NH4)3PW12O40 by reaction of in-situ generated PW12O403â^' with NH4+ in a strongly acidic solution. Materials Research Bulletin, 2013, 48, 4157-4162.	5.2	5
173	Triple-template system for phosphorus-modified AFX/CHA intergrowth zeolite. Microporous and Mesoporous Materials, 2020, 309, 110540.	4.4	5
174	Synthesis of Preyssler-Type Phosphotungstate with Sodium Cation in the Central Cavity through Migration of the Ion. Bulletin of the Chemical Society of Japan, 2020, 93, 461-466.	3.2	5
175	Multiple templating strategy for the control of aluminum and phosphorus distributions in AFX zeolite. Microporous and Mesoporous Materials, 2021, 321, 111124.	4.4	5
176	Zeolitic Octahedral Metal Oxides with Ultra‧mall Micropores for C 2 Hydrocarbon Separation. Angewandte Chemie, 2021, 133, 18476-18482.	2.0	5
177	Assembly of É›â€Keggin Polyoxometalate from Molecular Crystal to Zeolitic Octahedral Metal Oxide. Chemistry - A European Journal, 2022, , .	3.3	5
178	A [3+2] Annulation Procedure for the Synthesis of Bicyclic Methylenepyrrolidines. Synlett, 1997, 1, 95-96.	1.8	4
179	Structural Characterization of 2D Zirconomolybdate by Atomic Scale HAADF-STEM and XANES and Its Highly Stable Electrochemical Properties as a Li Battery Cathode. Inorganic Chemistry, 2017, 56, 14306-14314.	4.0	4
180	Reactivity of a (Benzene)Ruthenium(II) Cation on a Diâ€lacunary γâ€Kegginâ€Type Silicotungstate and Synthesis of a Monoâ€(Benzene)Ruthenium(II)â€Attached γâ€Kegginâ€Type Silicotungstate. European Journal of Inorganic Chemistry, 2018, 2018, 1778-1786.	2.0	4

#	Article	IF	CITATIONS
181	Intramolecular Electron Transfer and Oxygen Transfer of Phosphomolybdate Molecular Wires. Inorganic Chemistry, 2019, 58, 12272-12279.	4.0	4
182	Syntheses, and Crystal Structures of Y III Containing Diâ€Metal Substituted 1,5 Isomers of Heterometallic Tungstophosphate Nanoclusters: [Y{PM 2 W 10 O 38 (H 2 O) 2 } 2] 11– (M=Co II and Zn II) T	ijĔŦīQāq0 0	0 r g BT /Overl
183	Isolation and characterization of hirame aquareovirus (HAqRV): A new Aquareovirus isolated from diseased hirame Paralichthys olivaceus. Virology, 2021, 559, 120-130.	2.4	4
184	Synthesis and Applications of Mixed Oxide Nanotubes. Topics in Applied Physics, 2010, , 147-158.	0.8	4
185	Vanadium-Enhanced Intramolecular Redox Property of a Transition-Metal Oxide Molecular Wire. Inorganic Chemistry, 2020, 59, 16557-16566.	4.0	4
186	Post-synthetic amine functionalized SAPO-5 & SAPO-34 molecular sieves for epoxide ring opening reactions. Materials Today: Proceedings, 2021, 45, 3726-3732.	1.8	3
187	Synthesis of 3-D Ordered Macroporous M <i>x</i> H3â^' <i>x</i> PW12O40 (M = Cs+ and NH4+): Trimodal Mirco-, Meso-, and Macropores in Cs <i>x</i> H3â^' <i>x</i> PW12O40 Material. Chemistry Letters, 2010, 39, 426-427.	1.3	2
188	Incorporation of highly dispersed aluminum into inner surfaces of supermicroporous silica using anionic surfactant. Journal of Porous Materials, 2011, 18, 493-500.	2.6	2
189	Morphology-controlled preparation of iron-based oxides using a paper template. Materials Letters, 2012, 81, 80-83.	2.6	2
190	Fimbriae Expression by <i>Edwardsiella tarda</i> in High-salt Culture Conditions. Fish Pathology, 2015, 50, 207-212.	0.7	2
191	Solidâ€State Ion Migration in the Preysslerâ€Type Phosphotungstate for the Preparation of the Dipotassium Cationâ€Encapsulated Derivative. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1297-1302.	1.2	2
192	Structural Characterization of Ceriumâ€encapsulated Preysslerâ€type Phosphotungstate: Additional Evidence of Ce(III) in the Cavity. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1239-1244.	1.2	2
193	Prospects for Rational Assembly of Composite Polyoxometalates. Nanostructure Science and Technology, 2002, , 17-26.	0.1	1
194	Nano-Scale Deposition of Hydroxyapatite on Bioactive and Bioinert Fibers Using Carbon Nanofibers as Templates. Advanced Materials Research, 2011, 236-238, 2122-2125.	0.3	1
195	New Path for Polyoxometalates: Controlled Synthesis and Characterization of Metalâ€Substituted Tungstosulfates. European Journal of Inorganic Chemistry, 2020, 2020, 682-689.	2.0	1
196	New Path for Polyoxometalates: Controlled Synthesis and Characterization of Metal-Substituted Tungstosulfates. European Journal of Inorganic Chemistry, 2020, 2020, 666-666.	2.0	1
197	Poly(triethylene glycol methyl ether methacrylate) hydrogel as a carrier of phosphotungstic acid for acid catalytic reaction in water. Materials Advances, 0, , .	5.4	1
198	Dual Templating for AFX/LEV Intergrowth Zeolite. Chemistry Letters, 2022, 51, 121-123.	1.3	1

#	Article	IF	CITATIONS
199	A Novel Isopolytungstate Functionalized by Ruthenium: [HW9O33Rull2(dmso)6]7 ChemInform, 2004, 35, no.	0.0	ο
200	Ultrathin Anionic Tungstophosphite Molecular Wire with Tunable Hydrophilicity and Catalytic Activity for Selective Epoxidation in Organic Media. Chemistry - A European Journal, 2017, 23, 17397-17397.	3.3	0
201	Reactivity of a (Benzene)Ruthenium(II) Cation on a Di-lacunary γ-Keggin-Type Silicotungstate and Synthesis of a Mono-(Benzene)Ruthenium(II)-Attached γ-Keggin-Type Silicotungstate. European Journal of Inorganic Chemistry, 2018, 2018, 1776-1776.	2.0	0
202	Synthesis and Characterization of a Novel Heteropoly Acid/Hydrogel Composite. MATEC Web of Conferences, 2021, 333, 11005.	0.2	0
203	Chapter 29. Structural Organization of Catalytic Functions in Mo-Based Selective Oxidation Catalysts. , 2007, , 507-518.		Ο
204	New Crystalline Complex Metal Oxide Catalysts with Porous, Acidic, and Redox Properties. , 2019, , 199-221.		0
205	Synthesis,Âcharacterization, and multielectron redox propertyÂof pyridineâ€coordinated tetraâ€Ruâ€oxo		