Mario Paniccia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11048933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature, 2004, 427, 615-618.	27.8	1,423
2	A continuous-wave Raman silicon laser. Nature, 2005, 433, 725-728.	27.8	1,127
3	An all-silicon Raman laser. Nature, 2005, 433, 292-294.	27.8	792
4	High-speed optical modulation based on carrier depletion in a silicon waveguide. Optics Express, 2007, 15, 660.	3.4	631
5	Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nature Photonics, 2021, 15, 346-353.	31.4	260
6	Low-threshold continuous-wave Raman silicon laser. Nature Photonics, 2007, 1, 232-237.	31.4	259
7	Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Optics Express, 2004, 12, 4261.	3.4	219
8	High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. Optics Express, 2006, 14, 1182.	3.4	188
9	Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Optics Express, 2005, 13, 519.	3.4	174
10	A cascaded silicon Raman laser. Nature Photonics, 2008, 2, 170-174.	31.4	155
11	Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. Optics Express, 2006, 14, 11721.	3.4	150
12	Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide. Applied Physics Letters, 2004, 85, 2196-2198.	3.3	141
13	Wavelength Division Multiplexing Based Photonic Integrated Circuits on Silicon-on-Insulator Platform. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 23-32.	2.9	137
14	Wiring electronics with light. Nature Photonics, 2007, 1, 153-155.	31.4	131
15	Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator. Applied Physics Letters, 2004, 85, 5523-5525.	3.3	108
16	Characterization of efficient wavelength conversion by four-wave mixing in sub-micron silicon waveguides. Optics Express, 2008, 16, 16735.	3.4	100
17	Monolithic integrated Raman silicon laser. Optics Express, 2006, 14, 6705.	3.4	96
18	Lossless optical modulation in a silicon waveguide using stimulated Raman scattering. Optics Express, 2005, 13, 1716.	3.4	79

MARIO PANICCIA

4

#	Article	IF	CITATIONS
19	Reaching fiber-laser coherence in integrated photonics. Optics Letters, 2021, 46, 5201.	3.3	61
20	High-performance lasers for fully integrated silicon nitride photonics. Nature Communications, 2021, 12, 6650.	12.8	61
21	Recent development in a high-speed silicon optical modulator based on reverse-biased pn diode in a silicon waveguide. Semiconductor Science and Technology, 2008, 23, 064001.	2.0	37
22	A Silicon Modulator Enabling RF Over Fiber for 802.11 OFDM Signals. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 141-148.	2.9	37
23	Integrated silicon photonics for optical networks [Invited]. Journal of Optical Networking, 2007, 6, 25.	2.5	29
24	Raman amplification of 40 Gb/s data in low-loss silicon waveguides. Optics Express, 2007, 15, 357.	3.4	28
25	Developments in Gigascale Silicon Optical Modulators Using Free Carrier Dispersion Mechanisms. Advances in Optical Technologies, 2008, 2008, 1-10.	0.8	23
26	Advances in silicon photonic devices for silicon-based optoelectronic applications. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 35, 223-228.	2.7	16
27	Silicon Optical Modulator for High-speed Applications. , 2007, , .		15
28	Correlated self-heterodyne method for ultra-low-noise laser linewidth measurements. Optics Express, 2022, 30, 25147.	3.4	12
29	High-speed Silicon Modulator for Future VLSI Interconnect. , 2007, , .		9
30	High Speed Metal–Oxide–Semiconductor Capacitor-Based Silicon Optical Modulators. Japanese Journal of Applied Physics, 2006, 45, 6603-6608.	1.5	7
31	Recent development in silicon photonics: 2.5 Gb/s silicon optical modulator and silicon Raman laser. , 2005, , .		5
32	Silicon based laser, amplifier, and wavelength converter for optoelectronic integration. , 2006, , .		5
33	Monolithic integrated ring resonator Raman silicon laser and amplifier. , 2007, , .		5
34	Silicon photonic integration for high-speed applications. , 2008, , .		5
35	Seamless multi-reticle photonics. Optics Letters, 2021, 46, 2984.	3.3	5

Enhanced polarization-independent optical ring resonators on silicon-on-insulator., 2005, 5730, 195.

#	Article	IF	CITATIONS
37	Silicon Photonic Applications. , 0, , 297-325.		3
38	SOI-based monolithic integration of SiON and Si planar optical circuits. , 2006, , .		2
39	Recent development on silicon-based Raman lasers and amplifiers. , 2006, 6389, 28.		2
40	Recent Development on Silicon Raman Lasers and Amplifiers. , 2006, , .		2
41	Mid-span dispersion compensation via optical phase conjugation in silicon waveguides. , 2008, , .		2
42	Silicon photonic modulator and integration for high-speed applications. , 2008, , .		2
43	Silicon based chip-scale nonlinear optical devices: Laser, amplifier, and wavelength converter. , 2008, ,		2
44	Two-photon-absorption-based optical power monitor in silicon rib waveguides. , 2010, , .		2
45	Experimental and Theoretical Analysis of Thermal Impedance in a Hybrid Silicon Evanescent Laser. , 2007, , .		1
46	All-Optical Wavelength Conversion at 40 Gb/s Data Rate in Silicon Waveguides. , 2007, , .		1
47	Optical silicon modulator and photonic integration. , 2008, , .		1
48	200 Gbps photonic integrated chip on silicon platform. , 2008, , .		1
49	Silicon Photonics: Recent Development on Silicon Based Laser Amplifier and Wavelength Converter. , 2006, , .		0
50	Continuous tuning of silicon Raman laser for molecular spectroscopy. , 2007, , .		0
51	Monolithic integrated Raman silicon lasers and amplifiers. , 2007, , .		0
52	Silicon-based nonlinear optical devices for high-speed optical communications. , 2008, , .		0
53	A monolithic integrated low-threshold Raman silicon laser. , 2008, , .		0
54	Characterization of wavelength conversion by four wave mixing in silicon waveguides. , 2008, , .		0

MARIO PANICCIA

#	Article	IF	CITATIONS
55	Efficient wavelength conversion via four-wave mixing in sub-micron silicon rib waveguides. , 2009, , .		0
56	High-Speed Photonic Integrated Chip on a Silicon Platform. Topics in Applied Physics, 2011, , 169-186.	0.8	0
57	Recent Results in Silicon Photonics. , 2005, , .		0
58	Silicon Photonic Integrated Circuits for Optical Interconnect. , 2007, , .		0
59	Photonic Integration in Silicon for High-speed Applications. , 2008, , .		0