Himangshu S Bose

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11047011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Novel Mitochondrial Complex of Aldosterone Synthase, Steroidogenic Acute Regulatory Protein, and Tom22 Synthesizes Aldosterone in the Rat Heart. Journal of Pharmacology and Experimental Therapeutics, 2021, 377, 108-120.	2.5	7
2	Regulation of Estradiol Synthesis by Aromatase Interacting Partner in Breast (AIPB). Molecular and Cellular Biology, 2021, 41, e0035721.	2.3	1
3	Steroidogenic acute regulatory protein/aldosterone synthase mediates angiotensin II-induced cardiac fibrosis and hypertrophy. Molecular Biology Reports, 2020, 47, 1207-1222.	2.3	7
4	Electron Transport Chain Complex II Regulates Steroid Metabolism. IScience, 2020, 23, 101295.	4.1	14
5	SUN-219 Electron Transport Chain Complex 2 in Mitochondrial Pregnenolone Synthesis. Journal of the Endocrine Society, 2020, 4, .	0.2	0
6	p.Gln318X and p.Val281Leu as the Major Variants of <i>CYP21A2</i> Gene in Children with Idiopathic Premature Pubarche. International Journal of Endocrinology, 2020, 2020, 1-9.	1.5	1
7	SAT-562 Angiotensin II Induces Aldosterone Synthesis in the Rat Heart Stressed by Angiotensin II. Journal of the Endocrine Society, 2020, 4, .	0.2	Ο
8	<p>Liraglutide attenuates cardiac remodeling and improves heart function after abdominal aortic constriction through blocking angiotensin II type 1 receptor in rats</p> . Drug Design, Development and Therapy, 2019, Volume 13, 2745-2757.	4.3	33
9	Inner Mitochondrial Translocase Tim50 Is Central in Adrenal and Testicular Steroid Synthesis. Molecular and Cellular Biology, 2019, 39, .	2.3	6
10	Inner mitochondrial translocase Tim50 is central in steroid metabolism in steroidogenic tissues. FASEB Journal, 2019, 33, 660.3.	0.5	0
11	Deficient pregnenolone synthesis associated with congenital adrenal hyperplasia and organelle dysfunction. Endocrinology, Diabetes and Metabolism Case Reports, 2019, 2019, .	0.5	1
12	Mitochondrial metabolic regulation by GRP78. Science Advances, 2017, 3, e1602038.	10.3	67
13	De novo disruption of promoter and exon 1 of STAR gene reveals essential role for gonadal development. Endocrinology, Diabetes and Metabolism Case Reports, 2017, 2017, .	0.5	2
14	Endoplasmic Reticulum Stress Enhances Mitochondrial Metabolic Activity in Mammalian Adrenals and Gonads. Molecular and Cellular Biology, 2016, 36, 3058-3074.	2.3	32
15	An Outer Mitochondrial Translocase, Tom22, Is Crucial for Inner Mitochondrial Steroidogenic Regulation in Adrenal and Gonadal Tissues. Molecular and Cellular Biology, 2016, 36, 1032-1047.	2.3	26
16	Lipoid congenital adrenal hyperplasia due to STAR mutations in a Caucasian patient. Endocrinology, Diabetes and Metabolism Case Reports, 2016, 2016, 150119.	0.5	14
17	Novel SCC mutation in a patient of Mexican descent with sex reversal, salt-losing crisis and adrenal failure. Endocrinology, Diabetes and Metabolism Case Reports, 2016, 2016, .	0.5	6
18	Mitochondria-associated Endoplasmic Reticulum Membrane (MAM) Regulates Steroidogenic Activity via Steroidogenic Acute Regulatory Protein (StAR)-Voltage-dependent Anion Channel 2 (VDAC2) Interaction. Journal of Biological Chemistry, 2015, 290, 2604-2616.	3.4	119

HIMANGSHU S BOSE

#	Article	IF	CITATIONS
19	Regulation of Human 3β-Hydroxysteroid Dehydrogenase Type 2 by Adrenal Corticosteroids and Product-Feedback by Androstenedione in Human Adrenarche. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 67-76.	2.5	7
20	Regulation of human 3-beta-hydroxysteroid dehydrogenase type-2 (3βHSD2) by molecular chaperones and the mitochondrial environment affects steroidogenesis. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 74-84.	2.5	11
21	Passenger Protein Determines Translocation Versus Retention in the Endoplasmic Reticulum for Aromatase Expression. Molecular Pharmacology, 2014, 85, 290-300.	2.3	4
22	STARD6 is expressed in steroidogenic cells of the ovary and can enhance <i>de novo</i> steroidogenesis. Experimental Biology and Medicine, 2014, 239, 430-435.	2.4	13
23	Cholesterol-Mediated Conformational Changes in the Steroidogenic Acute Regulatory Protein Are Essential for Steroidogenesis. Biochemistry, 2013, 52, 7242-7253.	2.5	25
24	Chaperones Rejuvenate Folding and Activity of 3-β Hydroxysteroid Dehydrogenase 2. ACS Chemical Biology, 2013, 8, 1000-1008.	3.4	7
25	Alteration in Accumulated Aldosterone Synthesis As a Result of N-Terminal Cleavage of Aldosterone Synthase. Molecular Pharmacology, 2012, 81, 465-474.	2.3	4
26	Mitochondrial 3β-Hydroxysteroid Dehydrogenase Enzyme Activity Requires Reversible pH-dependent Conformational Change at the Intermembrane Space. Journal of Biological Chemistry, 2012, 287, 9534-9546.	3.4	27
27	Ï <i>f</i> -1 Receptor at the Mitochondrial-Associated Endoplasmic Reticulum Membrane Is Responsible for Mitochondrial Metabolic Regulation. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 578-586.	2.5	63
28	Ionic derivatives of betulinic acid as novel HIV-1 protease inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 715-721.	5.2	32
29	New ionic derivatives of betulinic acid as highly potent anti-cancer agents. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 1734-1738.	2.2	64
30	Lipid-Mediated Unfolding of 3β-Hydroxysteroid Dehydrogenase 2 Is Essential for Steroidogenic Activity. Biochemistry, 2011, 50, 11015-11024.	2.5	11
31	Inner Mitochondrial Translocase Tim50 Interacts with 3β-Hydroxysteroid Dehydrogenase Type 2 to Regulate Adrenal and Gonadal Steroidogenesis. Journal of Biological Chemistry, 2011, 286, 39130-39140.	3.4	35
32	Early steps in steroidogenesis: intracellular cholesterol trafficking. Journal of Lipid Research, 2011, 52, 2111-2135.	4.2	413
33	Decreased Cytochrome <i>c</i> Oxidase IV Expression Reduces Steroidogenesis. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 598-604.	2.5	9
34	Steroidogenic Acute Regulatory Protein Has a More Open Conformation Than the Independently Folded Smaller Subdomains. Biochemistry, 2009, 48, 11630-11639.	2.5	11
35	Hydrophobic Core of the Steroidogenic Acute Regulatory Protein for Cholesterol Transport. Biochemistry, 2009, 48, 1198-1209.	2.5	9
36	Identification of unknown protein complex members by radiolocalization and analysis of lowâ€abundance complexes resolved using native polyacrylamide gel electrophoresis. Electrophoresis, 2008, 29, 753-760.	2.4	9

HIMANGSHU S BOSE

#	Article	IF	CITATIONS
37	Cigarette smoke decreases mitochondrial porin expression and steroidogenesis. Toxicology and Applied Pharmacology, 2008, 227, 284-290.	2.8	5
38	Molecular mechanism of reduction in pregnenolone synthesis by cigarette smoke. Toxicology and Applied Pharmacology, 2008, 229, 56-64.	2.8	5
39	StAR-like Activity and Molten Globule Behavior of StARD6, A Male Germ-Line Protein. Biochemistry, 2008, 47, 2277-2288.	2.5	69
40	Steroidogenic Activity of StAR Requires Contact with Mitochondrial VDAC1 and Phosphate Carrier Protein. Journal of Biological Chemistry, 2008, 283, 8837-8845.	3.4	117
41	Folding, activity and import of steroidogenic acute regulatory protein into mitochondria changed by nicotine exposure. Journal of Molecular Endocrinology, 2007, 39, 67-79.	2.5	22
42	Peripheral-Type Benzodiazepine Receptor-Mediated Action of Steroidogenic Acute Regulatory Protein on Cholesterol Entry into Leydig Cell Mitochondria. Molecular Endocrinology, 2005, 19, 540-554.	3.7	218
43	pH-dependent Interactions of the Carboxyl-terminal Helix of Steroidogenic Acute Regulatory Protein with Synthetic Membranes. Journal of Biological Chemistry, 2005, 280, 2045-2054.	3.4	60
44	Molten Globule Structure and Steroidogenic Activity of N-218 MLN64 in Human Placental Mitochondria. Endocrinology, 2004, 145, 1700-1707.	2.8	58
45	Differential Regulation of Steroid Hormone Biosynthesis in R2C and MA-10 Leydig Tumor Cells: Role of SR-B1-Mediated Selective Cholesteryl Ester Transport1. Biology of Reproduction, 2003, 68, 114-121.	2.7	65
46	Transfer of Cholesterol between Phospholipid Vesicles Mediated by the Steroidogenic Acute Regulatory Protein (StAR). Journal of Biological Chemistry, 2002, 277, 47123-47128.	3.4	56
47	THE STEROIDOGENIC ACUTE REGULATORY PROTEIN, StAR, WORKS ONLY AT THE OUTER MITOCHONDRIAL MEMBRANE. Endocrine Research, 2002, 28, 295-308.	1.2	49
48	Rapid regulation of steroidogenesis by mitochondrial protein import. Nature, 2002, 417, 87-91.	27.8	317
49	Binding of Steroidogenic Acute Regulatory Protein to Synthetic Membranes Suggests an Active Molten Globule. Journal of Biological Chemistry, 2001, 276, 17044-17051.	3.4	62
50	Mutations in the Steroidogenic Acute Regulatory Protein (StAR) in Six Patients with Congenital Lipoid Adrenal Hyperplasia1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 3636-3639.	3.6	100
51	Evidence That Star and MLN64 act on the Outer Mitochondrial Membrane as Molten Globules. Endocrine Research, 2000, 26, 629-637.	1.2	35
52	N-218 MLN64, a Protein with StAR-like Steroidogenic Activity, Is Folded and Cleaved Similarly to StARâ€. Biochemistry, 2000, 39, 11722-11731.	2.5	94
53	Incorrect Folding of Steroidogenic Acute Regulatory Protein (StAR) in Congenital Lipoid Adrenal Hyperplasiaâ€. Biochemistry, 1998, 37, 9768-9775.	2.5	65
54	Spontaneous Feminization in a 46,XX Female Patient with Congenital Lipoid Adrenal Hyperplasia Due to a Homozygous Frameshift Mutation in the Steroidogenic Acute Regulatory Protein*. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1511-1515.	3.6	121

#	Article	IF	CITATIONS
55	The Pathophysiology and Genetics of Congenital Lipoid Adrenal Hyperplasia. New England Journal of Medicine, 1996, 335, 1870-1879.	27.0	603