Yaning Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11044901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk assessment of water resource shortages in the Aksu River basin of northwest China under climate change. Journal of Environmental Management, 2022, 305, 114394.	3.8	19
2	Response of Precipitation in Tianshan to Global Climate Change Based on the Berkeley Earth and ERA5 Reanalysis Products. Remote Sensing, 2022, 14, 519.	1.8	12
3	Effects of climate change on major elements of the hydrological cycle in Aksu River basin, northwest China. International Journal of Climatology, 2022, 42, 5359-5372.	1.5	5
4	Recent climate and hydrological changes in a mountain–basin system in Xinjiang, China. Earth-Science Reviews, 2022, 226, 103957.	4.0	107
5	Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia. Sustainability, 2022, 14, 3372.	1.6	15
6	Impact of Climate Change on the Hydrological Regime of the Yarkant River Basin, China: An Assessment Using Three SSP Scenarios of CMIP6 GCMs. Remote Sensing, 2022, 14, 115.	1.8	25
7	Increased Compound Droughts and Heatwaves in a Double Pack in Central Asia. Remote Sensing, 2022, 14, 2959.	1.8	8
8	Land Use Dynamic Changes in an Arid Inland River Basin Based on Multi-Scenario Simulation. Remote Sensing, 2022, 14, 2797.	1.8	15
9	Recent Changes in Glaciers in the Northern Tien Shan, Central Asia. Remote Sensing, 2022, 14, 2878.	1.8	8
10	Comprehensive evaluation of the water-energy-food nexus in the agricultural management of the Tarim River Basin, Northwest China. Agricultural Water Management, 2022, 271, 107811.	2.4	13
11	Intensification of extreme precipitation in arid Central Asia. Journal of Hydrology, 2021, 598, 125760.	2.3	77
12	Developing a Long Short-Term Memory (LSTM)-Based Model for Reconstructing Terrestrial Water Storage Variations from 1982 to 2016 in the Tarim River Basin, Northwest China. Remote Sensing, 2021, 13, 889.	1.8	21
13	Geospatial land surface-based thermal scenarios for wetland ecological risk assessment and its landscape dynamics simulation in Bayanbulak Wetland, Northwestern China. Landscape Ecology, 2021, 36, 1699-1723.	1.9	17
14	Rapidly declining surface and terrestrial water resources in Central Asia driven by socio-economic and climatic changes. Science of the Total Environment, 2021, 784, 147193.	3.9	71
15	Recent vegetation browning and its drivers on Tianshan Mountain, Central Asia. Ecological Indicators, 2021, 129, 107912.	2.6	22
16	Modeling streamflow driven by climate change in data-scarce mountainous basins. Science of the Total Environment, 2021, 790, 148256.	3.9	14
17	An integrated assessment of runoff dynamics in the Amu Darya River Basin: Confronting climate change and multiple human activities, 1960–2017. Journal of Hydrology, 2021, 603, 126905.	2.3	34
18	Projected Meteorological Drought over Asian Drylands under Different CMIP6 Scenarios. Remote Sensing, 2021, 13, 4409.	1.8	20

#	Article	IF	CITATIONS
19	Evaluation of multiple gridded precipitation datasets for the arid region of northwestern China. Atmospheric Research, 2020, 236, 104818.	1.8	49
20	Climate change may accelerate the decline of desert riparian forest in the lower Tarim River, Northwestern China: Evidence from tree-rings of Populus euphratica. Ecological Indicators, 2020, 111, 105997.	2.6	40
21	The impact of climate change and human activities on the Aral Sea Basin over the past 50Âyears. Atmospheric Research, 2020, 245, 105125.	1.8	62
22	Potential risks and challenges of climate change in the arid region of northwestern China. Regional Sustainability, 2020, 1, 20-30.	1.1	29
23	Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia. Journal of Hydrology, 2020, 590, 125355.	2.3	33
24	Monitoring and Predicting Drought Based on Multiple Indicators in an Arid Area, China. Remote Sensing, 2020, 12, 2298.	1.8	12
25	Recent Changes in Water Discharge in Snow and Glacier Melt-Dominated Rivers in the Tienshan Mountains, Central Asia. Remote Sensing, 2020, 12, 2704.	1.8	24
26	Has the Bosten Lake Basin been dry or wet during the climate transition in Northwest China in the past 30Âyears?. Theoretical and Applied Climatology, 2020, 141, 627-644.	1.3	15
27	Development and utilization of water resources and assessment of water security in Central Asia. Agricultural Water Management, 2020, 240, 106297.	2.4	46
28	Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China. Frontiers of Earth Science, 2020, 14, 568-577.	0.9	4
29	Quantifying the effects of climate variability, direct and indirect land use change, and human activities on runoff. Journal of Hydrology, 2020, 584, 124684.	2.3	52
30	Drought Risk Assessment in Central Asia Using a Probabilistic Copula Function Approach. Water (Switzerland), 2020, 12, 421.	1.2	14
31	Does elevation dependent warming exist in high mountain Asia?. Environmental Research Letters, 2020, 15, 024012.	2.2	32
32	Agricultural water demands in Central Asia under 1.5â€ [~] °C and 2.0â€ [~] °C global warming. Agricultural Water Management, 2020, 231, 106020.	2.4	55
33	Sustainable water management for cross-border resources: The Balkhash Lake Basin of Central Asia, 1931–2015. Journal of Cleaner Production, 2020, 263, 121614.	4.6	76
34	Study on the utilization efficiency of land and water resources in the Aral Sea Basin, Central Asia. Sustainable Cities and Society, 2019, 51, 101693.	5.1	21
35	Quantitative assessment of the ecological effects of land use/cover change in the arid region of Northwest China. Environmental Monitoring and Assessment, 2019, 191, 704.	1.3	11
36	Downscaling Precipitation in the Data-Scarce Inland River Basin of Northwest China Based on Earth System Data Products. Atmosphere, 2019, 10, 613.	1.0	17

#	Article	IF	CITATIONS
37	Nonlinear response of runoff to atmospheric freezing level height variation based on hybrid prediction models. Hydrological Sciences Journal, 2019, 64, 1556-1572.	1.2	8
38	Assessment of the Irrigation Water Requirement and Water Supply Risk in the Tarim River Basin, Northwest China. Sustainability, 2019, 11, 4941.	1.6	32
39	Hydro-climatic changes and their impacts on vegetation in Xinjiang, Central Asia. Science of the Total Environment, 2019, 660, 724-732.	3.9	64
40	Identification of the Space-Time Variability of Hydrological Drought in the Arid Region of Northwestern China. Water (Switzerland), 2019, 11, 1051.	1.2	9
41	An approach to simulate the climate-driven streamflow in the data-scarce mountain basins of Northwest China. Journal of Earth System Science, 2019, 128, 1.	0.6	12
42	Glacier changes from 1975 to 2016 in the Aksu River Basin, Central Tianshan Mountains. Journal of Chinese Geography, 2019, 29, 984-1000.	1.5	20
43	Quantifying the Effects of Climate and Vegetation on Soil Moisture in an Arid Area, China. Water (Switzerland), 2019, 11, 767.	1.2	21
44	Glacier and snow variations and their impacts on regional water resources in mountains. Journal of Chinese Geography, 2019, 29, 84-100.	1.5	28
45	Loss of terrestrial water storage in the Tianshan mountains from 2003 to 2015. International Journal of Remote Sensing, 2019, 40, 8342-8358.	1.3	20
46	Tracking climate change in Central Asia through temperature and precipitation extremes. Journal of Chinese Geography, 2019, 29, 3-28.	1.5	51
47	Water and Ecological Security at the Heart of China's Silk Road Economic Belt. , 2019, , 281-306.		1
48	Multi-scale assessments of droughts: A case study in Xinjiang, China. Science of the Total Environment, 2018, 630, 444-452.	3.9	131
49	Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains. Journal of Hydrology, 2018, 557, 173-181.	2.3	72
50	Why does the runoff in Hotan River show a slight decreased trend in northwestern China?. Atmospheric Science Letters, 2018, 19, e800.	0.8	15
51	Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China. Theoretical and Applied Climatology, 2018, 131, 1503-1515.	1.3	67
52	Spatioâ€ŧemporal variations of nonlinear trends of precipitation over an arid region of northwest China according to the extremeâ€point symmetric mode decomposition method. International Journal of Climatology, 2018, 38, 2239-2249.	1.5	25
53	Impacts of regional climate and teleconnection on hydrological change in the Bosten Lake Basin, arid region of northwestern China. Journal of Water and Climate Change, 2018, 9, 74-88.	1.2	4
54	A hybrid model to assess the impact of climate variability on streamflow for an ungauged mountainous basin. Climate Dynamics, 2018, 50, 2829-2844.	1.7	31

#	Article	IF	CITATIONS
55	Recent recovery of surface wind speed in northwest China. International Journal of Climatology, 2018, 38, 4445-4458.	1.5	49
56	Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016. Climatic Change, 2018, 151, 379-393.	1.7	43
57	Regional disparities in warm season rainfall changes over arid eastern–central Asia. Scientific Reports, 2018, 8, 13051.	1.6	14
58	The Spatiotemporal Response of Soil Moisture to Precipitation and Temperature Changes in an Arid Region, China. Remote Sensing, 2018, 10, 468.	1.8	47
59	Spatiotemporal variation of upper-air and surface wind speed and its influencing factors in northwestern China during 1980–2012. Theoretical and Applied Climatology, 2018, 133, 1303-1314.	1.3	11
60	Large Hydrological Processes Changes in the Transboundary Rivers of Central Asia. Journal of Geophysical Research D: Atmospheres, 2018, 123, 5059-5069.	1.2	76
61	Assessment of efficiency and potentiality of agricultural resources in Central Asia. Journal of Chinese Geography, 2018, 28, 1329-1340.	1.5	19
62	Hydroclimatic changes of Lake Bosten in Northwest China during the last decades. Scientific Reports, 2018, 8, 9118.	1.6	35
63	Multiscale evolution of surface air temperature in the arid region of Northwest China and its linkages to ocean oscillations. Theoretical and Applied Climatology, 2017, 128, 945-958.	1.3	20
64	Linear trend and abrupt changes of climate indices in the arid region of northwestern China. Atmospheric Research, 2017, 196, 108-118.	1.8	27
65	Changes of precipitation extremes in arid Central Asia. Quaternary International, 2017, 436, 16-27.	0.7	74
66	Multivariate assessment and attribution of droughts in Central Asia. Scientific Reports, 2017, 7, 1316.	1.6	122
67	Influences of recent climate change and human activities on water storage variations in Central Asia. Journal of Hydrology, 2017, 544, 46-57.	2.3	197
68	Climate change and runoff response based on isotope analysis in an arid mountain watershed of the western Kunlun Mountains. Hydrological Sciences Journal, 2017, 62, 319-330.	1.2	7
69	Review article: Hydrological modeling in glacierized catchments of central Asia – status and challenges. Hydrology and Earth System Sciences, 2017, 21, 669-684.	1.9	62
70	Dynamic changes in terrestrial net primary production and their effects on evapotranspiration. Hydrology and Earth System Sciences, 2016, 20, 2169-2178.	1.9	43
71	lsotopic Characterization of River Waters and Water Source Identification in an Inland River, Central Asia. Water (Switzerland), 2016, 8, 286.	1.2	26
72	Water resource formation and conversion and water security in arid region of Northwest China. Journal of Chinese Geography, 2016, 26, 939-952.	1.5	49

#	Article	IF	CITATIONS
73	Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer?. Scientific Reports, 2016, 6, 24398.	1.6	202
74	Impacts of land cover change and water management practices on the Tarim and Konqi river systems, Xinjiang, China. Journal of Applied Remote Sensing, 2016, 10, 046020.	0.6	5
75	Changes in Central Asia's Water Tower: Past, Present and Future. Scientific Reports, 2016, 6, 35458.	1.6	195
76	Water and ecological security: dealing with hydroclimatic challenges at the heart of China's Silk Road. Environmental Earth Sciences, 2016, 75, 1.	1.3	57
77	Drought promoted the disappearance of civilizations along the ancient Silk Road. Environmental Earth Sciences, 2016, 75, 1.	1.3	22
78	Runoff response to the glacier shrinkage in the Karatal river basin, Kazakhstan. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	12
79	Quantitatively evaluating the effects of climate factors on runoff change for Aksu River in northwestern China. Theoretical and Applied Climatology, 2016, 123, 97-105.	1.3	22
80	Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010?. Atmospheric Research, 2016, 167, 275-284.	1.8	196
81	Spatial and temporal variability of water vapor pressure in the arid region of northwest China, during 1961–2011. Theoretical and Applied Climatology, 2016, 123, 683-691.	1.3	21
82	Potential impacts of climate change on vegetation dynamics in Central Asia. Journal of Geophysical Research D: Atmospheres, 2015, 120, 12345-12356.	1.2	193
83	Use of ² H and ¹⁸ O stable isotopes to investigate water sources for different ages of <i>Populus euphratica</i> along the lower Heihe River. Ecological Research, 2015, 30, 581-587.	0.7	36
84	Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. Journal of Hydrology, 2015, 523, 283-296.	2.3	116
85	An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan Mountains and its adjacent areas, central Asia. Quaternary International, 2015, 358, 106-112.	0.7	53
86	Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin. Remote Sensing of Environment, 2015, 168, 177-193.	4.6	201
87	Detecting changes in extreme streamflow in the Tarim River, Northwest China. Quaternary International, 2015, 380-381, 149-158.	0.7	4
88	Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environmental Research, 2015, 139, 11-19.	3.7	216
89	Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. Global and Planetary Change, 2015, 135, 28-37.	1.6	79
90	Climate change and water storage variability over an arid endorheic region. Journal of Hydrology, 2015, 529, 330-339.	2.3	74

#	Article	IF	CITATIONS
91	Trend analysis of temperature and precipitation in the Syr Darya Basin in Central Asia. Theoretical and Applied Climatology, 2015, 120, 521-531.	1.3	60
92	Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of northwest China. Atmospheric Research, 2014, 138, 346-355.	1.8	129
93	Hydrological extreme variability in the headwater of Tarim River: links with atmospheric teleconnection and regional climate. Stochastic Environmental Research and Risk Assessment, 2014, 28, 443-453.	1.9	20
94	Evaluating the vegetation growing season changes in the arid region of northwestern China. Theoretical and Applied Climatology, 2014, 118, 569-579.	1.3	20
95	Integrating Wavelet Analysis and BPANN to Simulate the Annual Runoff With Regional Climate Change: A Case Study of Yarkand River, Northwest China. Water Resources Management, 2014, 28, 2523-2537.	1.9	36
96	Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quaternary International, 2014, 336, 35-43.	0.7	141
97	Quantitatively evaluating the effects of CO2 emission on temperature rise. Quaternary International, 2014, 336, 171-175.	0.7	10
98	Increasing precipitation and baseflow in Aksu River since the 1950s. Quaternary International, 2014, 336, 26-34.	0.7	21
99	Changes in extreme hydrological events. , 2014, , 359-404.		1
100	The Nonlinear Hydro-climatic Process: A Case Study of the Tarim Headwaters, NW China. , 2014, , 289-310.		0
101	Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China. Ecohydrology, 2013, 6, 927-936.	1.1	40
102	Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960–2010. Hydrological Processes, 2013, 27, 1807-1818.	1.1	124
103	Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989–2010. Agricultural Water Management, 2013, 128, 55-64.	2.4	154
104	Analysis of changing pan evaporation in the arid region of Northwest China. Water Resources Research, 2013, 49, 2205-2212.	1.7	100
105	Responses of Surface Runoff to Climate Change and Human Activities in the Arid Region of Central Asia: A Case Study in the Tarim River Basin, China. Environmental Management, 2013, 51, 926-938.	1.2	75
106	Temperature and precipitation changes in different environments in the arid region of northwest China. Theoretical and Applied Climatology, 2013, 112, 589-596.	1.3	111
107	Changes in daily climate extremes in the arid area of northwestern China. Theoretical and Applied Climatology, 2013, 112, 15-28.	1.3	98
108	Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theoretical and Applied Climatology, 2013, 111, 537-545.	1.3	95

#	Article	IF	CITATIONS
109	Combining BPANN and wavelet analysis to simulate hydro-climatic processes—a case study of the Kaidu River, North-west China. Frontiers of Earth Science, 2013, 7, 227-237.	0.9	21
110	Runoff responses to climate change in arid region of northwestern China during 1960–2010. Chinese Geographical Science, 2013, 23, 286-300.	1.2	54
111	Variation of baseflows in the headstreams of the Tarim River Basin during 1960–2007. Journal of Hydrology, 2013, 487, 98-108.	2.3	59
112	Land use and land cover change and driving mechanism in the arid inland river basin: a case study of Tarim River, Xinjiang, China. Environmental Earth Sciences, 2013, 68, 591-604.	1.3	91
113	The nonlinear hydro-climatic process in the Yarkand River, northwestern China. Stochastic Environmental Research and Risk Assessment, 2013, 27, 389-399.	1.9	24
114	Changes in annual and seasonal temperature extremes in the arid region of China, 1960–2010. Natural Hazards, 2013, 65, 1913-1930.	1.6	25
115	Variations of temperature and precipitation of snowmelt period and its effect on runoff in the mountainous areas of Northwest China. Journal of Chinese Geography, 2013, 23, 17-30.	1.5	31
116	Progress, Challenges and Prospects of Eco-Hydrological Studies in the Tarim River Basin of Xinjiang, China. Environmental Management, 2013, 51, 138-153.	1.2	54
117	Trends in runoff versus climate change in typical rivers in the arid region of northwest China. Quaternary International, 2012, 282, 87-95.	0.7	79
118	Why does the temperature rise faster in the arid region of northwest China?. Journal of Geophysical Research, 2012, 117, .	3.3	132
119	Response of runoff to change of atmospheric 0°C level height in summer in arid region of Northwest China. Science China Earth Sciences, 2012, 55, 1533-1544.	2.3	31
120	Climatic change of inland river basin in an arid area: a case study in northern Xinjiang, China. Theoretical and Applied Climatology, 2012, 107, 143-154.	1.3	15
121	Desiccation of the Tarim River, Xinjiang, China, and mitigation strategy. Quaternary International, 2011, 244, 264-271.	0.7	88
122	An integrated statistical approach to identify the nonlinear trend of runoff in the Hotan River and its relation with climatic factors. Stochastic Environmental Research and Risk Assessment, 2011, 25, 223-233.	1.9	31
123	Spatial and temporal trends of climate change in Xinjiang, China. Journal of Chinese Geography, 2011, 21, 1007-1018.	1.5	116
124	The Nonlinear trend of runoff and its response to climate change in the Aksu River, western China. International Journal of Climatology, 2011, 31, 687-695.	1.5	83
125	Impacts of temperature and precipitation on runoff in the Tarim River during the past 50 years. Journal of Arid Land, 2011, 3, 220-230.	0.9	49
126	Hydrology and water resources variation and its response to regional climate change in Xinjiang. Journal of Chinese Geography, 2010, 20, 599-612.	1.5	82

#	Article	IF	CITATIONS
127	Impacts of climatic change on river runoff in northern Xinjiang of China over last fifty years. Chinese Geographical Science, 2010, 20, 193-201.	1.2	18
128	Trends of major hydroclimatic variables in the Tarim River basin during the past 50 years. Journal of Arid Environments, 2010, 74, 256-267.	1.2	137
129	Longâ€ŧerm change of seasonal snow cover and its effects on river runoff in the Tarim River basin, northwestern China. Hydrological Processes, 2009, 23, 2045-2055.	1.1	42
130	Wavelet analysis and nonparametric test for climate change in Tarim River Basin of Xinjiang during 1959–2006. Chinese Geographical Science, 2009, 19, 306-313.	1.2	49
131	The complex nonlinear systems with fractal as well as chaotic dynamics of annual runoff processes in the three headwaters of the Tarim River. Journal of Chinese Geography, 2009, 19, 25-35.	1.5	32
132	Assessment of wetland fragmentation in the Tarim River basin, western China. Environmental Geology, 2009, 57, 455-464.	1.2	31
133	Impacts of Climate Change and Human Activities on the Surface Runoff in the Tarim River Basin over the Last Fifty Years. Water Resources Management, 2008, 22, 1159-1171.	1.9	169
134	Long-term trend and fractal of annual runoff process in mainstream of Tarim River. Chinese Geographical Science, 2008, 18, 77-84.	1.2	35
135	Climate change and its effects on runoff of Kaidu River, Xinjiang, China: A multiple time-scale analysis. Chinese Geographical Science, 2008, 18, 331-339.	1.2	66
136	Responses of streamflow to climate change in the northern slope of Tianshan Mountains in Xinjiang: A case study of the Toutun River basin. Science in China Series D: Earth Sciences, 2007, 50, 42-48.	0.9	11
137	Climate change and hydrologic process response in the Tarim River Basin over the past 50 years. Science Bulletin, 2006, 51, 25-36.	1.7	51
138	Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrological Processes, 2006, 20, 2207-2216.	1.1	231
139	Plausible impact of global climate change on water resources in the Tarim River Basin. Science in China Series D: Earth Sciences, 2005, 48, 65-73.	0.9	112