
Patrick W Alford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11043977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterizing Tissue Remodeling and Mechanical Heterogeneity in Cerebral Aneurysms. Journal of Vascular Research, 2022, 59, 34-42.	0.6	4
2	Cellular Microbiaxial Stretching Assay for Measurement and Characterization of the Anisotropic Mechanical Properties of Micropatterned Cells. Current Protocols, 2022, 2, e370.	1.3	1
3	Architecture-Dependent Mechano-Adaptation in Single Vascular Smooth Muscle Cells. Journal of Biomechanical Engineering, 2021, 143, .	0.6	7
4	Anisotropic Mechanics of Vascular Smooth Muscle Cells Exposed to Dynamic Loads. Journal of Biomechanical Engineering, 2021, 143, .	0.6	1
5	Orientation of neurites influences severity of mechanically induced tau pathology. Biophysical Journal, 2021, 120, 3272-3282.	0.2	8
6	Large-deformation strain energy density function for vascular smooth muscle cells. Journal of Biomechanics, 2020, 111, 110005.	0.9	10
7	Mechanical injuries of neurons induce tau mislocalization to dendritic spines and tau-dependent synaptic dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29069-29079.	3.3	30
8	Intrinsic Cell Stress is Independent of Organization in Engineered Cell Sheets. Cardiovascular Engineering and Technology, 2018, 9, 181-192.	0.7	10
9	Architecture-Dependent Anisotropic Hysteresis in Smooth Muscle Cells. Biophysical Journal, 2018, 115, 2044-2054.	0.2	14
10	Bimodal sensing of guidance cues in mechanically distinct microenvironments. Nature Communications, 2018, 9, 4891.	5.8	52
11	Investigation of human iPSC-derived cardiac myocyte functional maturation by single cell traction force microscopy. PLoS ONE, 2018, 13, e0194909.	1.1	41
12	Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural Model. Journal of Biomechanical Engineering, 2017, 139, .	0.6	43
13	Anisotropic forces from spatially constrained focal adhesions mediate contact guidance directed cell migration. Nature Communications, 2017, 8, 14923.	5.8	221
14	Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function. Journal of Biomechanical Engineering, 2017, 139, .	0.6	17
15	Empirically Determined Vascular Smooth Muscle Cell Mechano-Adaptation Law. Journal of Biomechanical Engineering, 2017, 139, .	0.6	18
16	Amyloid Beta Influences Vascular Smooth Muscle Contractility and Mechanoadaptation. Journal of Biomechanical Engineering, 2016, 138, .	0.6	16
17	Microfluidic Genipin Deposition Technique for Extended Culture of Micropatterned Vascular Muscular Thin Films. Journal of Visualized Experiments, 2015, , e52971.	0.2	2
18	Ice Hockey Summit II: Zero Tolerance for Head Hits and Fighting. PM and R, 2015, 7, 283-295.	0.9	6

PATRICK W ALFORD

#	Article	IF	CITATIONS
19	Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes. Experimental Biology and Medicine, 2015, 240, 1543-1554.	1.1	33
20	Ice Hockey Summit II. Clinical Journal of Sport Medicine, 2015, 25, 78-87.	0.9	8
21	Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties. Journal of Biomechanics, 2015, 48, 3044-3051.	0.9	66
22	Elasticity-Based Targeted Growth Models of Morphogenesis. Methods in Molecular Biology, 2015, 1189, 339-350.	0.4	0
23	Long-term vascular contractility assay using genipin-modified muscular thin films. Biofabrication, 2014, 6, 045005.	3.7	18
24	Smooth Muscle Phenotype Switching in Blast Traumatic Brain Injury-Induced Cerebral Vasospasm. Translational Stroke Research, 2014, 5, 385-393.	2.3	26
25	Prefailure and Failure Mechanics of the Porcine Ascending Thoracic Aorta: Experiments and a Multiscale Model. Journal of Biomechanical Engineering, 2014, 136, 021028.	0.6	45
26	Smooth muscle architecture within cell-dense vascular tissues influences functional contractility. Integrative Biology (United Kingdom), 2014, 6, 1201-1210.	0.6	18
27	The contractile strength of vascular smooth muscle myocytes is shape dependent. Integrative Biology (United Kingdom), 2014, 6, 152-163.	0.6	34
28	High-Throughput Microtissue Contractility Assay for In Vitro Analysis of Vascular Mechanics. , 2013, ,		0
29	Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture. Biomaterials, 2012, 33, 5732-5741.	5.7	195
30	Vascular smooth muscle contractility depends on cell shape. Integrative Biology (United Kingdom), 2011, 3, 1063-1070.	0.6	110
31	Ensembles of engineered cardiac tissues for physiological and pharmacological study: Heart on a chip. Lab on A Chip, 2011, 11, 4165.	3.1	452
32	Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19943-19948.	3.3	145
33	Blast-induced phenotypic switching in cerebral vasospasm. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 12705-12710.	3.3	115
34	A Possible Role for Integrin Signaling in Diffuse Axonal Injury. PLoS ONE, 2011, 6, e22899.	1.1	97
35	Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials, 2010, 31, 3613-3621.	5.7	144
36	Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomechanics and Modeling in Mechanobiology, 2008, 7, 245-262.	1.4	137

#	Article	IF	CITATIONS
37	Computational study of growth and remodelling in the aortic arch. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 525-538.	0.9	43
38	The role of mechanical forces in dextral rotation during cardiac looping in the chick embryo. Developmental Biology, 2004, 272, 339-350.	0.9	125
39	Regional epicardial strain in the embryonic chick heart during the early looping stages. Journal of Biomechanics, 2003, 36, 1135-1141.	0.9	21