Emmanuel H Demont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1104337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multigram Synthesis of Tetrasubstituted Dihydrobenzofuran GSK973 Enabled by High-Throughput Experimentation and a Claisen Rearrangement in Flow. Organic Process Research and Development, 2022, 26, 365-379.	1.3	2
2	Template-Hopping Approach Leads to Potent, Selective, and Highly Soluble Bromo and Extraterminal Domain (BET) Second Bromodomain (BD2) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 3249-3281.	2.9	19
3	Discovery of a Highly Selective BET BD2 Inhibitor from a DNA-Encoded Library Technology Screening Hit. Journal of Medicinal Chemistry, 2021, 64, 10806-10833.	2.9	31
4	Optimization of a Series of 2,3-Dihydrobenzofurans as Highly Potent, Second Bromodomain (BD2)-Selective, Bromo and Extra-Terminal Domain (BET) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10711-10741.	2.9	17
5	Identification of a Series of <i>N</i> -Methylpyridine-2-carboxamides as Potent and Selective Inhibitors of the Second Bromodomain (BD2) of the Bromo and Extra Terminal Domain (BET) Proteins. Journal of Medicinal Chemistry, 2021, 64, 10742-10771.	2.9	14
6	Fragment-based Scaffold Hopping: Identification of Potent, Selective, and Highly Soluble Bromo and Extra Terminal Domain (BET) Second Bromodomain (BD2) Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 10772-10805.	2.9	17
7	Optimization of Naphthyridones into Selective TATA-Binding Protein Associated Factor 1 (TAF1) Bromodomain Inhibitors. ACS Medicinal Chemistry Letters, 2021, 12, 1308-1317.	1.3	4
8	Discovery of a Novel Bromodomain and Extra Terminal Domain (BET) Protein Inhibitor, I-BET282E, Suitable for Clinical Progression. Journal of Medicinal Chemistry, 2021, 64, 12200-12227.	2.9	26
9	Design and Synthesis of a Highly Selective and <i>In Vivo</i> -Capable Inhibitor of the Second Bromodomain of the Bromodomain and Extra Terminal Domain Family of Proteins. Journal of Medicinal Chemistry, 2020, 63, 9070-9092.	2.9	40
10	CSK789: A Selective Inhibitor of the First Bromodomains (BD1) of the Bromo and Extra Terminal Domain (BET) Proteins. Journal of Medicinal Chemistry, 2020, 63, 9045-9069.	2.9	59
11	The Optimization of a Novel, Weak Bromo and Extra Terminal Domain (BET) Bromodomain Fragment Ligand to a Potent and Selective Second Bromodomain (BD2) Inhibitor. Journal of Medicinal Chemistry, 2020, 63, 9093-9126.	2.9	41
12	Structure-Based Design of a Bromodomain and Extraterminal Domain (BET) Inhibitor Selective for the N-Terminal Bromodomains That Retains an Anti-inflammatory and Antiproliferative Phenotype. Journal of Medicinal Chemistry, 2020, 63, 9020-9044.	2.9	38
13	Domain-selective targeting of BET proteins in cancer and immunological diseases. Current Opinion in Chemical Biology, 2020, 57, 184-193.	2.8	43
14	Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science, 2020, 368, 387-394.	6.0	274
15	GSK973 Is an Inhibitor of the Second Bromodomains (BD2s) of the Bromodomain and Extra-Terminal (BET) Family. ACS Medicinal Chemistry Letters, 2020, 11, 1581-1587.	1.3	25
16	Optimization of Potent ATAD2 and CECR2 Bromodomain Inhibitors with an Atypical Binding Mode. Journal of Medicinal Chemistry, 2020, 63, 5212-5241.	2.9	14
17	A Qualified Success: Discovery of a New Series of ATAD2 Bromodomain Inhibitors with a Novel Binding Mode Using High-Throughput Screening and Hit Qualification. Journal of Medicinal Chemistry, 2019, 62, 7506-7525.	2.9	19
18	Discovery of Tetrahydroquinoxalines as Bromodomain and Extra-Terminal Domain (BET) Inhibitors with Selectivity for the Second Bromodomain. Journal of Medicinal Chemistry, 2018, 61, 4317-4334.	2.9	94

Emmanuel H Demont

#	Article	IF	CITATIONS
19	Aiming to Miss a Moving Target: Bromo and Extra Terminal Domain (BET) Selectivity in Constrained ATAD2 Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 8321-8336.	2.9	17
20	A Chemical Probe for the ATAD2 Bromodomain. Angewandte Chemie, 2016, 128, 11554-11558.	1.6	10
21	A Chemical Probe for the ATAD2 Bromodomain. Angewandte Chemie - International Edition, 2016, 55, 11382-11386.	7.2	67
22	Discovery of Tetrahydropyrazolopyridine as Sphingosine 1-Phosphate Receptor 3 (S1P ₃)-Sparing S1P ₁ Agonists Active at Low Oral Doses. Journal of Medicinal Chemistry, 2016, 59, 1003-1020.	2.9	10
23	Structure-Based Optimization of Naphthyridones into Potent ATAD2 Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 6151-6178.	2.9	81
24	Fragment-Based Discovery of Low-Micromolar ATAD2 Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 5649-5673.	2.9	75
25	Navigating CYP1A Induction and Arylhydrocarbon Receptor Agonism in Drug Discovery. A Case History with S1P ₁ Agonists. Journal of Medicinal Chemistry, 2015, 58, 8236-8256.	2.9	15
26	Optimization of Sphingosine-1-phosphate-1 Receptor Agonists: Effects of Acidic, Basic, and Zwitterionic Chemotypes on Pharmacokinetic and Pharmacodynamic Profiles. Journal of Medicinal Chemistry, 2014, 57, 10424-10442.	2.9	19
27	The Discovery of I-BET726 (CSK1324726A), a Potent Tetrahydroquinoline ApoA1 Up-Regulator and Selective BET Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2014, 57, 8111-8131.	2.9	159
28	Discovery of a Selective S1P ₁ Receptor Agonist Efficacious at Low Oral Dose and Devoid of Effects on Heart Rate. ACS Medicinal Chemistry Letters, 2011, 2, 444-449.	1.3	27
29	Discovery of a Brain-Penetrant S1P ₃ -Sparing Direct Agonist of the S1P ₁ and S1P ₅ Receptors Efficacious at Low Oral Dose. Journal of Medicinal Chemistry, 2011, 54, 6724-6733.	2.9	31
30	BACE-1 hydroxyethylamine inhibitors using novel edge-to-face interaction with Arg-296. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4639-4644.	1.0	12
31	Second generation of BACE-1 inhibitors part 3: Towards non hydroxyethylamine transition state mimetics. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3674-3678.	1.0	53
32	Second generation of BACE-1 inhibitors part 2: Optimisation of the non-prime side substituent. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3669-3673.	1.0	45
33	Second generation of BACE-1 inhibitors. Part 1: The need for improved pharmacokinetics. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3664-3668.	1.0	46
34	BACE-1 inhibitors Part 1: Identification of novel hydroxy ethylamines (HEAs). Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1011-1016.	1.0	45
35	BACE-1 inhibitors part 2: Identification of hydroxy ethylamines (HEAs) with reduced peptidic character. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1017-1021.	1.0	55
36	BACE-1 inhibitors part 3: Identification of hydroxy ethylamines (HEAs) with nanomolar potency in cells. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1022-1026.	1.0	62

#	Article	IF	CITATIONS
37	Second Generation of Hydroxyethylamine BACE-1 Inhibitors: Optimizing Potency and Oral Bioavailability. Journal of Medicinal Chemistry, 2008, 51, 3313-3317.	2.9	62
38	Oral administration of a potent and selective non-peptidic BACE-1 inhibitor decreases ?-cleavage of amyloid precursor protein and amyloid-? production in vivo. Journal of Neurochemistry, 2007, 100, 802-809.	2.1	186