Huixin He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11043278/publications.pdf Version: 2024-02-01

HUIVIN HE

#	Article	IF	CITATIONS
1	Microwave-Enabled Incorporation of Single Atomic Cu Catalytic Sites in Holey Graphene: Unifying Structural Requirements of a Carbon Matrix for Simultaneous Achievement of High Activity and Long-Term Durability. ACS Applied Energy Materials, 2020, 3, 8266-8275.	5.1	9
2	Moving Electrons Purposefully through Single Molecules and Nanostructures: A Tribute to the Science of Professor Nongjian Tao (1963–2020). ACS Nano, 2020, 14, 12291-12312.	14.6	2
3	Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nature Energy, 2020, 5, 386-397.	39.5	621
4	Selective Hydrogenation by Carbocatalyst: The Role of Radicals. Organic Letters, 2019, 21, 8164-8168.	4.6	25
5	Tuning the electronic properties of the γ-Al ₂ O ₃ surface by phosphorus doping. Physical Chemistry Chemical Physics, 2019, 21, 15080-15088.	2.8	11
6	Graphene oxide catalyzed ketone α-alkylation with alkenes: enhancement of graphene oxide activity by hydrogen bonding. Chemical Communications, 2019, 55, 5379-5382.	4.1	17
7	Pd-Catalyzed Suzuki-Miyaura Cross-Coupling of Pentafluorophenyl Esters. Molecules, 2018, 23, 3134.	3.8	18
8	Dry microwave heating enables scalable fabrication of pristine holey graphene nanoplatelets and their catalysis in reductive hydrogen atom transfer reactions. Carbon, 2018, 139, 861-871.	10.3	25
9	P and S dual-doped graphitic porous carbon for aerobic oxidation reactions: Enhanced catalytic activity and catalytic sites. Carbon, 2017, 114, 383-392.	10.3	65
10	Structural Transformation of Li-Excess Cathode Materials via Facile Preparation and Assembly of Sonication-Induced Colloidal Nanocrystals for Enhanced Lithium Storage Performance. ACS Applied Materials & Interfaces, 2017, 9, 31181-31191.	8.0	7
11	Combined Effect of Porosity and Surface Chemistry on the Electrochemical Reduction of Oxygen on Cellular Vitreous Carbon Foam Catalyst. ACS Catalysis, 2017, 7, 7466-7478.	11.2	42
12	Ï€-Plasmon absorption of carbon nanotubes for the selective and sensitive detection of Fe ³⁺ ions. Chemical Science, 2016, 7, 5192-5199.	7.4	55
13	P-Doped Porous Carbon as Metal Free Catalysts for Selective Aerobic Oxidation with an Unexpected Mechanism. ACS Nano, 2016, 10, 2305-2315.	14.6	276
14	Graphene: Microwave Enabled One-Pot, One-Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications (Small 27/2015). Small, 2015, 11, 3357-3357.	10.0	1
15	Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy. International Journal of Nanomedicine, 2015, 10, 2347.	6.7	68
16	An Ionâ€Exchange Promoted Phase Transition in a Liâ€Excess Layered Cathode Material for Highâ€Performance Lithium Ion Batteries. Advanced Energy Materials, 2015, 5, 1401937.	19.5	82
17	Microwave Enabled Oneâ€Pot, Oneâ€Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications. Small, 2015, 11, 3358-3368.	10.0	106
18	Graphene-Catalyzed Direct Friedel–Crafts Alkylation Reactions: Mechanism, Selectivity, and Synthetic Utility. Journal of the American Chemical Society, 2015, 137, 14473-14480.	13.7	147

Ηυιχιν Ηε

#	Article	IF	CITATIONS
19	Synergy of oxygen and a piranha solution for eco-friendly production of highly conductive graphene dispersions. Green Chemistry, 2015, 17, 869-881.	9.0	27
20	Microwave-induced temperature fields in graphite powder heated in a waveguide reactor. , 2014, , .		0
21	Direct Production of Graphene Nanosheets for Near Infrared Photoacoustic Imaging. ACS Nano, 2013, 7, 8147-8157.	14.6	94
22	PEGylated Graphene Oxide-Mediated Protein Delivery for Cell Function Regulation. ACS Applied Materials & Interfaces, 2012, 4, 6317-6323.	8.0	154
23	Microwave- and Nitronium Ion-Enabled Rapid and Direct Production of Highly Conductive Low-Oxygen Graphene. Journal of the American Chemical Society, 2012, 134, 5850-5856.	13.7	115
24	Poly(propyleneimine) dendrimers as potential siRNA delivery nanocarrier: from structure to function. International Journal of Nanotechnology, 2011, 8, 36.	0.2	28
25	DNA and carbon nanotubes as medicine. Advanced Drug Delivery Reviews, 2010, 62, 633-649.	13.7	180
26	Production of Graphene Sheets by Direct Dispersion with Aromatic Healing Agents. Small, 2010, 6, 1100-1107.	10.0	156
27	Labile Catalytic Packaging of DNA/siRNA: Control of Gold Nanoparticles "out―of DNA/siRNA Complexes. ACS Nano, 2010, 4, 3679-3688.	14.6	61
28	Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. Journal of Controlled Release, 2009, 140, 284-293.	9.9	305
29	Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells. BMC Cancer, 2009, 9, 351.	2.6	149
30	Internally Cationic Polyamidoamine PAMAM-OH Dendrimers for siRNA Delivery: Effect of the Degree of Quaternization and Cancer Targeting. Biomacromolecules, 2009, 10, 258-266.	5.4	202
31	Fabrication of high performance conducting polymer nanocomposites for biosensors and flexible electronics: summary of the multiple roles of DNA dispersed and functionalized single walled carbon nanotubes. Journal of Materials Chemistry, 2009, 19, 6465.	6.7	62
32	The Electronic Role of DNA-Functionalized Carbon Nanotubes: Efficacy for in Situ Polymerization of Conducting Polymer Nanocomposites. Journal of the American Chemical Society, 2008, 130, 7921-7928.	13.7	36
33	Improved Conductivity of Carbon Nanotube Networks by <i>In Situ</i> Polymerization of a Thin Skin of Conducting Polymer. ACS Nano, 2008, 2, 1197-1204.	14.6	81
34	Surface-Modified and Internally Cationic Polyamidoamine Dendrimers for Efficient siRNA Delivery. Bioconjugate Chemistry, 2008, 19, 1396-1403.	3.6	196
35	A Nonoxidative Electrochemical Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine: A Review. Sensors, 2008, 8, 8423-8452.	3.8	70
36	Conducting polymer nanocomposites: interactions at interfaces. , 2007, , .		0

Ηυιχιν Ηε

#	Article	IF	CITATIONS
37	Highly Aligned Ribbon-Shaped Pd Nanoparticle Assemblies by Spontaneous Organization. Journal of Physical Chemistry C, 2007, 111, 7666-7670.	3.1	10
38	A Nonoxidative Sensor Based on a Self-Doped Polyaniline/Carbon Nanotube Composite for Sensitive and Selective Detection of the Neurotransmitter Dopamine. Analytical Chemistry, 2007, 79, 2583-2587.	6.5	464
39	Interference of Ascorbic Acid in the Sensitive Detection of Dopamine by a Nonoxidative Sensing Approach. Journal of Physical Chemistry B, 2007, 111, 12275-12281.	2.6	47
40	In Situ Fabrication of A Water-Soluble, Self-Doped Polyaniline Nanocomposite:Â The Unique Role of DNA Functionalized Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2006, 128, 12064-12065.	13.7	65
41	Enhanced Sensitivity for Biosensors:Â Multiple Functions of DNA-Wrapped Single-Walled Carbon Nanotubes in Self-Doped Polyaniline Nanocomposites. Journal of Physical Chemistry B, 2006, 110, 16359-16365.	2.6	133
42	Oligodeoxynucleotide nanostructure formation in the presence of polypropyleneimine dendrimers and their uptake in breast cancer cells. Nanotechnology, 2006, 17, 5449-5460.	2.6	27
43	Nanotechnology in Nonviral Gene Delivery. , 2005, , 251-287.		4
44	Assembly of Highly Aligned DNA Strands onto Si Chips. Langmuir, 2005, 21, 4180-4184.	3.5	42
45	Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates. Journal of the American Chemical Society, 2004, 126, 7097-7101.	13.7	360
46	Electrochemical properties of atomic-scale metal wires. Electrochimica Acta, 2003, 48, 3085-3091.	5.2	25
47	Controlling the Conductance of Atomically Thin Metal Wires with Electrochemical Potential. Journal of the American Chemical Society, 2002, 124, 13568-13575.	13.7	32
48	A Conducting Polymer Nanojunction Switch. Journal of the American Chemical Society, 2001, 123, 7730-7731.	13.7	196
49	Monitoring the Electrochemical Transformation of an Azobenzene-Terminated Alkanethiolate Monolayer at Gold by Chemical Force Microscopy. Molecular Crystals and Liquid Crystals, 1999, 337, 305-308.	0.3	6
50	SPM-based nanofabrication using a synchronization technique. Applied Physics A: Materials Science and Processing, 1998, 66, S715-S717.	2.3	11
51	Fabrication and Structural Characterization of Azobenzene Monolayer on Silver Island Films By LB and SA Techniques. Molecular Crystals and Liquid Crystals, 1998, 314, 297-302.	0.3	0
52	Developing High Resolution Electrical Probing System Based on Atomic Force Microscopy. Molecular Crystals and Liquid Crystals, 1997, 294, 91-94.	0.3	2