
Bengt Gunnar Jonsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1104277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biological Conservation, 1995, 72, 355-362.	4.1	324
2	Challenges of ecological restoration: Lessons from forests in northern Europe. Biological Conservation, 2013, 167, 248-256.	4.1	181
3	Fine woody debris is important for species richness on logs in managed boreal spruce forests of northern Sweden. Canadian Journal of Forest Research, 1999, 29, 1295-1299.	1.7	150
4	Wood-inhabiting cryptogams on dead Norway spruce (<i>Picea abies</i>) trees in managed Swedish boreal forests. Canadian Journal of Forest Research, 1999, 29, 178-186.	1.7	148
5	Differences in habitat quality explain nestedness in a land snail meta-community. Oikos, 2005, 108, 351-361.	2.7	139
6	Edge Effects on Liverworts and Lichens in Forest Patches in a Mosaic of Boreal Forest and Wetland. Conservation Biology, 2003, 17, 380-388.	4.7	126
7	Colonization and extinction patterns of woodâ€decaying fungi in a boreal oldâ€growth <i>Picea abies</i> forest. Journal of Ecology, 2008, 96, 1065-1075.	4.0	119
8	Habitat loss: ecological, evolutionary and genetic consequences. Trends in Ecology and Evolution, 2000, 15, 132-134.	8.7	113
9	Availability of coarse woody debris in a boreal old-growth Picea abies forest. Journal of Vegetation Science, 2000, 11, 51-56.	2.2	110
10	A null model for randomization tests of nestedness in species assemblages. Oecologia, 2001, 127, 309-313.	2.0	110
11	The bryophyte diaspore bank and its role after small-scale disturbance in a boreal forest. Journal of Vegetation Science, 1993, 4, 819-826.	2.2	105
12	Verifying an Extinction Debt among Lichens and Fungi in Northern Swedish Boreal Forests. Conservation Biology, 2005, 19, 338-348.	4.7	105
13	The benefits of systematic mapping to evidence-based environmental management. Ambio, 2016, 45, 613-620.	5.5	105
14	Refining volume estimates of down woody debris. Canadian Journal of Forest Research, 2007, 37, 627-633.	1.7	102
15	Modelling dead wood in Norway spruce stands subject to different management regimes. Forest Ecology and Management, 2003, 182, 13-29.	3.2	101
16	Predictability of plant and fungal species richness of oldâ€growth boreal forest islands. Journal of Vegetation Science, 2001, 12, 857-866.	2.2	91
17	Eighteen years of tree mortality and structural change in an experimentally fragmented Norway spruce forest. Forest Ecology and Management, 2007, 242, 306-313.	3.2	86
18	Impacts of dead wood manipulation on the biodiversity of temperate and boreal forests. A systematic review. Journal of Applied Ecology, 2019, 56, 1770-1781.	4.0	79

#	Article	IF	CITATIONS
19	Nested plant and fungal communities; the importance of area and habitat quality in maximizing species capture in boreal old-growth forests. Biological Conservation, 2003, 112, 319-328.	4.1	76
20	Isolation and edge effects among woodland key habitats in Sweden: Is forest policy promoting fragmentation?. Biological Conservation, 2005, 124, 89-95.	4.1	75
21	Spore deposition of wood-decaying fungi: importance of landscape composition. Ecography, 2004, 27, 103-111.	4.5	73
22	Dead wood availability in managed Swedish forests – Policy outcomes and implications for biodiversity. Forest Ecology and Management, 2016, 376, 174-182.	3.2	73
23	Dating uprooted trees: comparison and application of eight methods in a boreal forest. Canadian Journal of Forest Research, 1991, 21, 655-665.	1.7	70
24	Tree growth and competition in an oldâ€growth <i><scp>P</scp>icea abies</i> forest of boreal <scp>S</scp> weden: influence of tree spatial patterning. Journal of Vegetation Science, 2014, 25, 374-385.	2.2	70
25	Spatial pattern of downed logs and woodâ€decaying fungi in an oldâ€growth Picea abies forest. Journal of Vegetation Science, 2001, 12, 609-620.	2.2	68
26	Spatial pattern and dispersal in the leafy hepatic <i>Ptilidium pulcherrimum</i> . Journal of Bryology, 1989, 15, 793-802.	1.2	67
27	Demographics and disturbance history of a boreal oldâ€growth <i>Picea abies</i> forest. Journal of Vegetation Science, 2008, 19, 789-798.	2.2	66
28	Uprooting in boreal spruce forests: long-term variation in disturbance rate. Canadian Journal of Forest Research, 1993, 23, 2383-2388.	1.7	63
29	Landscape trajectory of natural boreal forest loss as an impediment to green infrastructure. Conservation Biology, 2019, 33, 152-163.	4.7	54
30	Forest history and the development of oldâ€growth characteristics in fragmented boreal forests. Journal of Vegetation Science, 2009, 20, 91-106.	2.2	53
31	Plant colonisation in small forest-floor patches: importance of plant group and disturbance traits. Ecography, 1998, 21, 518-526.	4.5	50
32	Assessing coarse woody debris in Swedish woodland key habitats: Implications for conservation and management. Forest Ecology and Management, 2007, 242, 363-373.	3.2	50
33	Sweden does not meet agreed national and international forest biodiversity targets: A call for adaptive landscape planning. Landscape and Urban Planning, 2020, 202, 103838.	7.5	50
34	Modeling dead wood in Fennoscandian old-growth forests dominated by Norway spruce. Canadian Journal of Forest Research, 2004, 34, 1025-1034.	1.7	47
35	FUNGI AND WIND STRONGLY INFLUENCE THE TEMPORAL AVAILABILITY OF LOGS IN AN OLD-GROWTH SPRUCE FOREST. , 2007, 17, 482-490.		47
36	Restoration fire and wood-inhabiting fungi in a Swedish Pinus sylvestris forest. Forest Ecology and Management, 2010, 259, 1971-1980.	3.2	47

Bengt Gunnar Jonsson

#	Article	IF	CITATIONS
37	Addition of coarse woody debris – The early fungal succession on Picea abies logs in managed forests and reserves. Biological Conservation, 2011, 144, 1100-1110.	4.1	44
38	Insular patterns of calicioid lichens in a boreal old-growth forest-wetland mosaic. Ecography, 1997, 20, 605-613.	4.5	42
39	Patterns in species associations in plant communities: the importance of scale. Journal of Vegetation Science, 1998, 9, 327-332.	2.2	38
40	Production of diaspores at the landscape level regulates local colonization: an experiment with a sporeâ€dispersed moss. Ecography, 2014, 37, 591-598.	4.5	35
41	Conservation significance of intact forest landscapes in the Scandinavian Mountains Green Belt. Landscape Ecology, 2020, 35, 2113-2131.	4.2	33
42	Growth and reproduction in the leafy hepatic <i>Ptilidium pulcherrimum</i> (G. Web.) Vainio during a 4-year period. Journal of Bryology, 1988, 15, 315-325.	1.2	32
43	Climate mitigation forestry—temporal trade-offs. Environmental Research Letters, 2021, 16, 114037.	5.2	31
44	Assessing the extinction vulnerability of wood-inhabiting fungal species in fragmented northern Swedish boreal forests. Biological Conservation, 2008, 141, 3029-3039.	4.1	30
45	European Union's Last Intact Forest Landscapes are at A Value Chain Crossroad between Multiple Use and Intensified Wood Production. Forests, 2019, 10, 564.	2.1	30
46	Beetle attraction to sporocarps and wood infected with mycelia of decay fungi in old-growth spruce forests of northern Sweden. Forest Ecology and Management, 2006, 237, 335-341.	3.2	28
47	North Fennoscandian mountain forests: History, composition, disturbance dynamics and the unpredictable future. Forest Ecology and Management, 2017, 385, 140-149.	3.2	24
48	Riparian bryophyte vegetation in the Cascade mountain range, Northwest U.S.A.: patterns at different spatial scales. Canadian Journal of Botany, 1997, 75, 744-761.	1.1	21
49	Broad-scale distribution of epiphytic hair lichens correlates more with climate and nitrogen deposition than with forest structure. Canadian Journal of Forest Research, 2016, 46, 1348-1358.	1.7	21
50	Quantifying Habitat Requirements of Tree‣iving Species in Fragmented Boreal Forests with Bayesian Methods. Conservation Biology, 2009, 23, 1127-1137.	4.7	18
51	Screening for species potentially sensitive to habitat fragmentation. Ecography, 1998, 21, 649-652.	4.5	17
52	Landscape and substrate properties affect species richness and community composition of saproxylic beetles. Forest Ecology and Management, 2012, 286, 108-120.	3.2	16
53	Logistic regression for clustered data from environmental monitoringÂprograms. Ecological Informatics, 2018, 43, 165-173.	5.2	16
54	Tolerance of focal species to forest management intensity as a guide in the development of conservation targets. Forest Ecology and Management, 2009, 258, S142-S145.	3.2	14

#	Article	IF	CITATIONS
55	Contrasting longâ€term effects of transient anthropogenic edges and forest fragment size on generalist and specialist deadwoodâ€dwelling fungi. Journal of Applied Ecology, 2017, 54, 1142-1151.	4.0	13
56	Multiple drivers of largeâ€scale lichen decline in boreal forest canopies. Global Change Biology, 2022, 28, 3293-3309.	9.5	11
57	Reprint of: North Fennoscandian mountain forests: History, composition, disturbance dynamics and the unpredictable future. Forest Ecology and Management, 2017, 388, 90-99.	3.2	10
58	Strengthening the Network of High Conservation Value Forests in Boreal Landscapes. Frontiers in Ecology and Evolution, 2021, 8, .	2.2	10
59	Host-tree associations. , 2012, , 82-109.		8
60	Antifungal efficiency of individual compounds and evaluation of non-linear effects by recombining fractionated turpentine. Microchemical Journal, 2020, 153, 104325.	4.5	8
61	Rapid Changes in Ground Vegetation of Mature Boreal Forests—An Analysis of Swedish National Forest Inventory Data. Forests, 2021, 12, 475.	2.1	7
62	Rocky pine forests in the High Coast Region in Sweden: structure, dynamics and history. Nature Conservation, 0, 38, 101-130.	0.0	6
63	Spatial distribution of epiphytes on Populus tremula in relation to dispersal mode. Journal of Vegetation Science, 2003, 14, 233.	2.2	5
64	Evaluation of fractionally distilled Picea abies TMP-turpentine on wood-decaying fungi: in vitro, microcosm and field experiments. Wood Science and Technology, 2020, 54, 847-868.	3.2	5
65	Spared, shared and lost—routes for maintaining the Scandinavian Mountain foothill intact forest landscapes. Regional Environmental Change, 2022, 22, 1.	2.9	4
66	Effect of Debarking Water from Norway Spruce (Picea abies) on the Growth of Five Species ofWood-Decaying Fungi. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2014, 69, 418-424.	1.4	2