Joseph Martinod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11041775/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Reviews of Geophysics, 1993, 31, 357.	23.0	1,633
2	Timing, kinematics and cause of Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics, 1999, 315, 31-72.	2.2	256
3	Flat subduction dynamics and deformation of the South American plate: Insights from analog modeling. Tectonics, 2008, 27, .	2.8	189
4	Relative sea-level fall since the last interglacial stage: Are coasts uplifting worldwide?. Earth-Science Reviews, 2011, 108, 1-15.	9.1	155
5	Late Cenozoic deformation and uplift of the western flank of the Altiplano: Evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile) Tj ETQq1 1 C).78 24.8 14 r	gB I \$Øverloc
6	Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°–35°S). Tectonics, 2008, 27, .	2.8	123
7	Crustalâ€scale structural architecture in central Chile based on seismicity and surface geology: Implications for Andean mountain building. Tectonics, 2010, 29, .	2.8	123
8	Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile Triple Junction. Tectonophysics, 2004, 385, 211-241.	2.2	111
9	Neogene uplift of central eastern Patagonia: Dynamic response to active spreading ridge subduction?. Tectonics, 2009, 28, .	2.8	103
10	Shortening of analogue models of the continental lithosphere: New hypothesis for the formation of the Tibetan plateau. Tectonics, 1994, 13, 475-483.	2.8	96
11	Variations of slab dip and overriding plate tectonics during subduction: Insights from analogue modelling. Tectonophysics, 2009, 463, 167-174.	2.2	85
12	Uplift of quaternary shorelines in eastern Patagonia: Darwin revisited. Geomorphology, 2011, 127, 121-142.	2.6	83
13	Renewed uplift of the Central Andes Forearc revealed by coastal evolution during the Quaternary. Earth and Planetary Science Letters, 2010, 297, 199-210.	4.4	75
14	Periodic instabilities during compression of the lithosphere: 2. Analogue experiments. Journal of Geophysical Research, 1994, 99, 12057-12069.	3.3	72
15	An analog experiment for the Aegean to describe the contribution of gravitational potential energy. Journal of Geophysical Research, 1997, 102, 649-659.	3.3	72
16	Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models. Tectonophysics, 2010, 496, 83-98.	2.2	68
17	Dynamic topography control on Patagonian relief evolution as inferred from low temperature thermochronology. Earth and Planetary Science Letters, 2013, 364, 157-167.	4.4	68
18	From subduction to collision: Control of deep processes on the evolution of convergent plate boundary. Journal of Geophysical Research, 2003, 108, .	3.3	63

Joseph Martinod

#	Article	IF	CITATIONS
19	Effect of aseismic ridge subduction on slab geometry and overriding plate deformation: Insights from analogue modeling. Tectonophysics, 2013, 588, 39-55.	2.2	60
20	Slab pull and indentation tectonics: insights from 3D laboratory experiments. Physics of the Earth and Planetary Interiors, 2005, 149, 99-113.	1.9	48
21	Active deformation in the inner western Alps inferred from comparison between 1972-classical and 1996-GPS geodetic surveys. Tectonophysics, 2000, 320, 17-29.	2.2	43
22	Late Cenozoic geomorphologic signal of Andean forearc deformation and tilting associated with the uplift and climate changes of the Southern Atacama Desert (26°S–28°S). Geomorphology, 2007, 86, 283-306.	2.6	41
23	Laboratory experiments of slab breakâ€off and slab dip reversal: insight into the Alpine Oligocene reorganization. Terra Nova, 2008, 20, 267-273.	2.1	40
24	Widening of the Andes: An interplay between subduction dynamics and crustal wedge tectonics. Earth-Science Reviews, 2020, 204, 103170.	9.1	37
25	Buckling of the oceanic lithosphere from geophysical data and experiments. Tectonics, 1992, 11, 537-548.	2.8	32
26	A note on ¹⁰ Beâ€derived mean erosion rates in catchments with heterogeneous lithology: examples from the western Central Andes. Earth Surface Processes and Landforms, 2015, 40, 1719-1729.	2.5	31
27	Geomorphological markers of faulting and neotectonic activity along the western Andean margin, northern Chile. Journal of Quaternary Science, 2003, 18, 681-694.	2.1	26
28	Variability in erosion rates related to the state of landscape transience in the semiâ€∎rid Chilean Andes. Earth Surface Processes and Landforms, 2011, 36, 1736-1748.	2.5	26
29	Pleistocene uplift, climate and morphological segmentation of the Northern Chile coasts (24°S–32°S): Insights from cosmogenic 10Be dating of paleoshorelines. Geomorphology, 2016, 274, 78-91.	2.6	23
30	Present-day deformation of the Dauphine Alpine and Subalpine massifs (SE France). Geophysical Journal International, 1996, 127, 189-200.	2.4	22
31	The interplay between overriding plate kinematics, slab dip and tectonics. Geophysical Journal International, 2018, 215, 1789-1802.	2.4	20
32	The metamorphic rocks of the Nunatak Viedma in the Southern Patagonian Andes: Provenance sources and implications for the early Mesozoic Patagonia-Antarctic Peninsula connection. Journal of South American Earth Sciences, 2019, 90, 471-486.	1.4	20
33	Slab dip, surface tectonics: How and when do they change following an acceleration/slow down of the overriding plate?. Tectonophysics, 2018, 726, 110-120.	2.2	19
34	Chronology of Chilean Frontal Cordillera building from geochronological, stratigraphic and geomorphological data insights from Miocene intramontaneâ€basin deposits. Basin Research, 2018, 30, 289-310.	2.7	16
35	Upper Pleistocene uplifted shorelines as tracers of (local rather than global) subduction dynamics. Journal of Geodynamics, 2014, 78, 8-20.	1.6	14
36	Using gemorphological markers to discriminate Neogene tectonic activity in the Precordillera of North Chilean forearc (24–25°S). Tectonophysics, 2005, 411, 41-55.	2.2	13

Joseph Martinod

#	Article	IF	CITATIONS
37	Influence of early strike-slip deformation on subsequent perpendicular shortening: An experimental approach. Journal of Structural Geology, 2007, 29, 59-72.	2.3	11
38	Synconvergence flow inside and at the margin of orogenic plateaus: Lithosphericâ€scale experimental approach. Journal of Geophysical Research: Solid Earth, 2015, 120, 6634-6657.	3.4	11
39	Role of climate and tectonics in the geomorphologic evolution of the Semiarid Chilean Andes between 27-32°S Andean Geology, 2013, 40, .	0.5	9
40	Trench-parallel spreading ridge subduction and its consequences for the geological evolution of the overriding plate: Insights from analogue models and comparison with the Neogene subduction beneath Patagonia. Tectonophysics, 2018, 737, 27-39.	2.2	9
41	Structure and tectonic evolution of the South Patagonian fold and thrust belt: Coupling between subduction dynamics, climate and tectonic deformation. , 2019, , 675-697.		9
42	Late Miocene - Quaternary forearc uplift in southern Peru: new insights from 10Be dates and rocky coastal sequences. Journal of South American Earth Sciences, 2021, 109, 103261.	1.4	8
43	Seismotectonic implications of the South Chile ridge subduction beneath the Patagonian Andes. Terra Nova, 2021, 33, 364-374.	2.1	6
44	RegalÂ: réseau GPS permanent dans les Alpes occidentales. Configuration et premiers résultats. Comptes Rendus De L'Académie Des Sciences Earth & Planetary Sciences Série II, Sciences De La Terre Et Des Planètes =, 2000, 331, 435-442.	0.2	2