List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11040164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polymeric Photocatalysts Based on Graphitic Carbon Nitride. Advanced Materials, 2015, 27, 2150-2176.	11.1	3,046
2	2D/2D Heterojunction of Ultrathin MXene/Bi ₂ WO ₆ Nanosheets for Improved Photocatalytic CO ₂ Reduction. Advanced Functional Materials, 2018, 28, 1800136.	7.8	1,157
3	g-C ₃ N ₄ -Based Photocatalysts for Hydrogen Generation. Journal of Physical Chemistry Letters, 2014, 5, 2101-2107.	2.1	1,107
4	Designing a 0D/2D Sâ€Scheme Heterojunction over Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Inactivation of Bacteria. Angewandte Chemie - International Edition, 2020, 59, 5218-5225.	7.2	822
5	Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO ₂ reduction. Journal of Materials Chemistry A, 2017, 5, 3230-3238.	5.2	621
6	Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chemical Society Reviews, 2016, 45, 4747-4765.	18.7	568
7	Two-dimensional layered composite photocatalysts. Chemical Communications, 2014, 50, 10768.	2.2	551
8	An Inorganic/Organic Sâ€5cheme Heterojunction H ₂ â€Production Photocatalyst and its Charge Transfer Mechanism. Advanced Materials, 2021, 33, e2100317.	11.1	528
9	Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Applied Catalysis B: Environmental, 2015, 164, 380-388.	10.8	483
10	Recent advances in visible light Bi-based photocatalysts. Chinese Journal of Catalysis, 2014, 35, 989-1007.	6.9	481
11	Semiconductor-based photocatalytic CO ₂ conversion. Materials Horizons, 2015, 2, 261-278.	6.4	380
12	Facet effect of Pd cocatalyst on photocatalytic CO 2 reduction over g-C 3 N 4. Journal of Catalysis, 2017, 349, 208-217.	3.1	332
13	TiO2 nanosheets with exposed {001} facets for photocatalytic applications. Nano Research, 2016, 9, 3-27.	5.8	327
14	Singleâ€Atom Engineering of Directional Charge Transfer Channels and Active Sites for Photocatalytic Hydrogen Evolution. Advanced Functional Materials, 2018, 28, 1802169.	7.8	287
15	Designing Defective Crystalline Carbon Nitride to Enable Selective CO ₂ Photoreduction in the Gas Phase. Advanced Functional Materials, 2019, 29, 1900093.	7.8	254
16	Carbon-based H2-production photocatalytic materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 27, 72-99.	5.6	252
17	A comparison study of alkali metal-doped g-C3N4 for visible-light photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2017, 38, 1981-1989.	6.9	244
18	g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. Journal of Power Sources, 2015, 274, 77-84.	4.0	241

#	Article	IF	CITATIONS
19	Efficient photocatalytic reduction of CO2 by amine-functionalized g-C3N4. Applied Surface Science, 2015, 358, 350-355.	3.1	229
20	Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants. Applied Catalysis B: Environmental, 2016, 181, 71-78.	10.8	219
21	Trace-level phosphorus and sodium co-doping of g-C 3 N 4 for enhanced photocatalytic H 2 production. Journal of Power Sources, 2017, 351, 151-159.	4.0	205
22	Shape-dependent photocatalytic hydrogen evolution activity over a Pt nanoparticle coupled g-C ₃ N ₄ photocatalyst. Physical Chemistry Chemical Physics, 2016, 18, 19457-19463.	1.3	190
23	Highly Selective CO2 Capture and Its Direct Photochemical Conversion on Ordered 2D/1D Heterojunctions. Joule, 2019, 3, 2792-2805.	11.7	189
24	Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 2021, 42, 710-730.	6.9	182
25	Au/PtO nanoparticle-modified g-C 3 N 4 for plasmon-enhanced photocatalytic hydrogen evolution under visible light. Journal of Colloid and Interface Science, 2016, 461, 56-63.	5.0	169
26	A Single Cu-Center Containing Enzyme-Mimic Enabling Full Photosynthesis under CO ₂ Reduction. ACS Nano, 2020, 14, 8584-8593.	7.3	166
27	Cu2(OH)2CO3 clusters: Novel noble-metal-free cocatalysts for efficient photocatalytic hydrogen production from water splitting. Applied Catalysis B: Environmental, 2017, 205, 104-111.	10.8	137
28	Gold Coating of Silver Nanoprisms. Advanced Functional Materials, 2012, 22, 849-854.	7.8	116
29	Enhanced photocatalytic CO2-reduction activity of electrospun mesoporous TiO2 nanofibers by solvothermal treatment. Dalton Transactions, 2014, 43, 9158.	1.6	105
30	Microwave-assisted solvothermal synthesis of Bi4O5I2 hierarchical architectures with high photocatalytic performance. Catalysis Today, 2016, 264, 221-228.	2.2	100
31	Promoting intramolecular charge transfer of graphitic carbon nitride by donor–acceptor modulation for visibleâ€light photocatalytic H ₂ evolution. , 2022, 1, 294-308.		92
32	From Millimeter to Subnanometer: Vapor–Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie - International Edition, 2017, 56, 8426-8430.	7.2	90
33	Supramolecular Chemistry in Molten Sulfur: Preorganization Effects Leading to Marked Enhancement of Carbon Nitride Photoelectrochemistry. Advanced Functional Materials, 2015, 25, 6265-6271.	7.8	89
34	Dual Z-scheme charge transfer in TiO2–Ag–Cu2O composite for enhanced photocatalytic hydrogen generation. Journal of Materiomics, 2015, 1, 124-133.	2.8	86
35	Controlling defects in crystalline carbon nitride to optimize photocatalytic CO ₂ reduction. Chemical Communications, 2020, 56, 5641-5644.	2.2	83
36	Effects of the preparation method on the structure and the visible-light photocatalytic activity of Ag ₂ CrO ₄ . Beilstein Journal of Nanotechnology, 2014, 5, 658-666.	1.5	76

#	Article	IF	CITATIONS
37	3D BiOl–GO composite with enhanced photocatalytic performance for phenol degradation under visible-light. Ceramics International, 2015, 41, 3511-3517.	2.3	74
38	Room-temperature synthesis of BiOI with tailorable (0 0 1) facets and enhanced photocatalytic activity. Journal of Colloid and Interface Science, 2016, 478, 201-208.	5.0	74
39	Ni-P cluster modified carbon nitride toward efficient photocatalytic hydrogen production. Chinese Journal of Catalysis, 2019, 40, 867-874.	6.9	73
40	Surfactantâ€Free Subâ€2 nm Ultrathin Triangular Gold Nanoframes. Small, 2013, 9, 2880-2886.	5.2	66
41	Improving Artificial Photosynthesis over Carbon Nitride by Gas–Liquid–Solid Interface Management for Full Lightâ€Induced CO ₂ Reduction to C ₁ and C ₂ Fuels and O ₂ . ChemSusChem, 2020, 13, 1730-1734.	3.6	59
42	Vectorial doping-promoting charge transfer in anatase TiO2 {001} surface. Applied Surface Science, 2014, 319, 167-172.	3.1	55
43	Enhanced photochemical CO ₂ reduction in the gas phase by graphdiyne. Journal of Materials Chemistry A, 2020, 8, 7671-7676.	5.2	52
44	A strategy for in-situ synthesis of well-defined core–shell Au@TiO2 hollow spheres for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2014, 257, 112-121.	6.6	51
45	Ionâ€Induced Synthesis of Uniform Singleâ€Crystalline Sulphideâ€Based Quaternaryâ€Alloy Hexagonal Nanorings for Highly Efficient Photocatalytic Hydrogen Evolution. Advanced Materials, 2013, 25, 2567-2572.	11.1	45
46	Dependence of Exposed Facet of Pd on Photocatalytic H ₂ -Production Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 6478-6487.	3.2	41
47	Nanocages of Polymeric Carbon Nitride from Lowâ€Temperature Supramolecular Preorganization for Photocatalytic CO ₂ Reduction. Solar Rrl, 2020, 4, 1900469.	3.1	38
48	Solar-Driven Glucose Isomerization into Fructose via Transient Lewis Acid–Base Active Sites. ACS Catalysis, 2021, 11, 12170-12178.	5.5	36
49	Effect of sacrificial agents on the dispersion of metal cocatalysts for photocatalytic hydrogen evolution. Applied Surface Science, 2018, 442, 361-367.	3.1	33
50	"Environmental phosphorylation―boosting photocatalytic CO2 reduction over polymeric carbon nitride grown on carbon paper at air-liquid-solid joint interfaces. Chinese Journal of Catalysis, 2021, 42, 1667-1676.	6.9	33
51	Ultra-Thin Carbon-Doped Bi2WO6 Nanosheets for Enhanced Photocatalytic CO2 Reduction. Transactions of Tianjin University, 2021, 27, 338-347.	3.3	29
52	Ultrathin 2D/2D Graphdiyne/Bi ₂ WO ₆ Heterojunction for Gas-Phase CO ₂ Photoreduction. ACS Applied Energy Materials, 2021, 4, 8734-8738.	2.5	23
53	A "uniform―heterogeneous photocatalyst: integrated p–n type CuInS ₂ /NaInS ₂ nanosheets by partial ion exchange reaction for efficient H ₂ evolution. Chemical Communications, 2015, 51, 9381-9384.	2.2	22
54	All-organic Z-scheme photoreduction of CO2 with water as the donor of electrons and protons. Applied Catalysis B: Environmental, 2021, 285, 119773.	10.8	19

#	Article	IF	CITATIONS
55	Potassium/oxygen co-doped polymeric carbon nitride for enhanced photocatalytic CO2 reduction. Applied Surface Science, 2021, 563, 150310.	3.1	18
56	From Millimeter to Subnanometer: Vapor–Solid Deposition of Carbon Nitride Hierarchical Nanostructures Directed by Supramolecular Assembly. Angewandte Chemie, 2017, 129, 8546-8550.	1.6	16
57	Designing a 0D/2D Sâ€Scheme Heterojunction over Polymeric Carbon Nitride for Visibleâ€Light Photocatalytic Inactivation of Bacteria. Angewandte Chemie, 2020, 132, 5256-5263.	1.6	14
58	A 3D Hierarchical Ti ₃ C ₂ T _x /TiO ₂ Heterojunction for Enhanced Photocatalytic CO ₂ Reduction. ChemNanoMat, 2021, 7, 910-915.	1.5	14
59	Donor–Acceptor Modification of Carbon Nitride for Enhanced Photocatalytic Hydrogen Evolution. Advanced Sustainable Systems, 2023, 7, .	2.7	14
60	CsPbBr3 perovskite based tandem device for CO2 photoreduction. Chemical Engineering Journal, 2022, 443, 136447.	6.6	8
61	Photocatalysts based on polymeric carbon nitride for solar-to-fuel conversion. Interface Science and Technology, 2020, 31, 475-507.	1.6	2