
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11039141/publications.pdf Version: 2024-02-01

SIODMEDOD

#	Article	IF	CITATIONS
1	Multiple stressors in freshwater ecosystems. Freshwater Biology, 2010, 55, 1-4.	1.2	717
2	New paradigms for modelling species distributions?. Journal of Applied Ecology, 2004, 41, 193-200.	1.9	465
3	Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology, 2007, 13, 942-957.	4.2	390
4	The continuing challenges of testing species distribution models. Journal of Applied Ecology, 2005, 42, 720-730.	1.9	256
5	Dispersal of adult aquatic insects in catchments of differing land use. Journal of Applied Ecology, 2004, 41, 934-950.	1.9	238
6	The ordination and classification of macroinvertebrate assemblages in the catchment of the River Wye in relation to environmental factors. Freshwater Biology, 1987, 17, 533-546.	1.2	183
7	Improving the Quality of Distribution Models for Conservation by Addressing Shortcomings in the Field Collection of Training Data. Conservation Biology, 2003, 17, 1601-1611.	2.4	154
8	Trends in water quality and discharge confound longâ€ŧerm warming effects on river macroinvertebrates. Freshwater Biology, 2009, 54, 388-405.	1.2	153
9	Evidence needed to manage freshwater ecosystems in a changing climate: Turning adaptation principles into practice. Science of the Total Environment, 2010, 408, 4150-4164.	3.9	150
10	Short-term experimental acidification of a Welsh stream: comparing the biological effects of hydrogen ions and aluminium. Freshwater Biology, 1987, 17, 341-356.	1.2	149
11	Comparing the responses of diatoms and macro- invertebrates to metals in upland streams of Wales and Cornwall. Freshwater Biology, 2002, 47, 1752-1765.	1.2	131
12	Scaleâ€dependent effects of fine sediments on temperate headwater invertebrates. Freshwater Biology, 2009, 54, 203-219.	1.2	128
13	The influence of plantation forestry on the pH and aluminium concentration of upland welsh streams: A re-examination. Environmental Pollution, 1989, 62, 47-62.	3.7	113
14	Community persistence among stream invertebrates tracks the North Atlantic Oscillation. Journal of Animal Ecology, 2001, 70, 987-996.	1.3	113
15	The Influence of Riparian Management on the Habitat Structure and Macroinvertebrate Communities of Upland Streams Draining Plantation Forests. Journal of Applied Ecology, 1993, 30, 13.	1.9	107
16	Lowâ€level effects of inert sediments on temperate stream invertebrates. Freshwater Biology, 2010, 55, 476-486.	1.2	100
17	Egg mass and shell thickness in dippers Cinclus cinclus in relation to stream acidity in Wales and Scotland. Environmental Pollution, 1988, 55, 107-121.	3.7	99
18	The Ecology of Dippers Cinclus cinclus in Relation to Stream Acidity in Upland Wales: Breeding Performance, Calcium Physiology and Nestling Growth. Journal of Applied Ecology, 1991, 28, 419.	1.9	99

#	Article	IF	CITATIONS
19	Restoration and recovery from acidification in upland Welsh streams over 25 years. Journal of Applied Ecology, 2009, 46, 164-174.	1.9	97
20	Restoration in applied ecology: editor's introduction. Journal of Applied Ecology, 2003, 40, 44-50.	1.9	96
21	Long-term effects of catchment liming on invertebrates in upland streams. Freshwater Biology, 2002, 47, 161-171.	1.2	95
22	Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Research and Applications, 2011, 27, 257-267.	0.7	95
23	Current issues with fish and fisheries: editor's overview and introduction. Journal of Applied Ecology, 2003, 40, 204-213.	1.9	94
24	Molecular systematics and phylogeography of the cryptic species complex Baetis rhodani (Ephemeroptera, Baetidae). Molecular Phylogenetics and Evolution, 2006, 40, 370-382.	1.2	94
25	Acidic episodes retard the biological recovery of upland British streams from chronic acidification. Global Change Biology, 2007, 13, 2439-2452.	4.2	86
26	Climate change, river conservation and the adaptation challenge. Aquatic Conservation: Marine and Freshwater Ecosystems, 2009, 19, 609-613.	0.9	78
27	The impact of acidification on macroinvertebrate assemblages in welsh streams: Towards an empirical model. Environmental Pollution, 1987, 46, 223-240.	3.7	74
28	Odonates as Indicators of Shallow Lake Restoration by Liming: Comparing Adult and Larval Responses. Restoration Ecology, 2004, 12, 439-446.	1.4	72
29	Macro-floral assemblages in upland Welsh streams in relation to acidity, and their importance to invertebrates. Freshwater Biology, 1987, 18, 545-557.	1.2	67
30	METHODOLOGICAL INSIGHTS: Increasing the value of principal components analysis for simplifying ecological data: a case study with rivers and river birds. Journal of Applied Ecology, 2005, 42, 487-497.	1.9	65
31	Evidence for the role of climate in the local extinction of a cool-water triclad. Journal of the North American Benthological Society, 2010, 29, 1367-1378.	3.0	64
32	The distribution of breeding dippers (Cinclus cinclus (L.); Aves) in relation to stream acidity in upland Wales. Freshwater Biology, 1986, 16, 501-507.	1.2	61
33	Microhabitat availability in Welsh moorland and forest streams as a determinant of macroinvertebrate distribution. Freshwater Biology, 1989, 22, 247-261.	1.2	61
34	Forests and the temperature of upland streams in Wales: a modelling exploration of the biological effects. Freshwater Biology, 1990, 24, 109-122.	1.2	61
35	Effects of episodic acidification on macroinvertebrate assemblages in Swiss Alpine streams. Freshwater Biology, 2003, 48, 1873-1885.	1.2	60
36	Exploitation of prey by a river bird, the dipper Cinclus cinclus (L.), along acidic and circumneutral streams in upland Wales. Freshwater Biology, 1991, 25, 105-116.	1.2	58

#	Article	IF	CITATIONS
37	An outdoor mesocosm study to assess ecotoxicological effects of atrazine on a natural plankton community. Archives of Environmental Contamination and Toxicology, 1995, 29, 435.	2.1	57
38	Meeting the ecological challenges of agricultural change: editors' introduction. Journal of Applied Ecology, 2003, 40, 939-946.	1.9	57
39	Relationships between the physicochemistry and macroinvertebrates of British upland streams: the development of modelling and indicator systems for predicting fauna and detecting acidity. Freshwater Biology, 1990, 24, 463-480.	1.2	56
40	Juvenile salmonid populations in a temperate river system track synoptic trends in climate. Global Change Biology, 2010, 16, 3271-3283.	4.2	56
41	Classification and ordination of macroinvertebrate assemblages to predict stream acidity in upland Wales. Hydrobiologia, 1989, 171, 59-78.	1.0	55
42	Recognizing the importance of scale in the ecology and management of riverine fish. River Research and Applications, 2006, 22, 1143-1152.	0.7	54
43	Preliminary empirical models of the historical and future impact of acidification on the ecology of Welsh streams. Freshwater Biology, 1988, 20, 127-140.	1.2	53
44	Intensive sampling and transplantation experiments reveal continued effects of episodic acidification on sensitive stream invertebrates. Freshwater Biology, 2006, 51, 180-191.	1.2	52
45	The Constancy of Invertebrate Assemblages in Soft-Water Streams: Implications for the Prediction and Detection of Environmental Change. Journal of Applied Ecology, 1990, 27, 952.	1.9	51
46	Assessing the short-term response of stream diatoms to acidity using inter-basin transplantations and chemical diffusing substrates. Freshwater Biology, 2004, 49, 1072-1088.	1.2	51
47	Combining surveys of river habitats and river birds to appraise riverine hydromorphology. Freshwater Biology, 2007, 52, 2270-2284.	1.2	50
48	Rebalancing the philosophy of river conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 2014, 24, 147-152.	0.9	47
49	Improving bioâ€diagnostic monitoring using simple combinations of standard biotic indices. River Research and Applications, 2009, 25, 348-361.	0.7	45
50	Evaluating the precision of kick-sampling in upland streams for assessments of long-term change: the effects of sampling effort, habitat and rarity fig: 5 tab: 5. Fundamental and Applied Limnology, 2002, 155, 199-221.	0.4	45
51	The importance of acid episodes in determining faunal distributions in Welsh streams. Freshwater Biology, 1991, 25, 71-84.	1.2	44
52	Birds as indicators of changes in water quality. , 1993, , 179-216.		44
53	The diet of breeding Dippers <i>Cinclus cinclus</i> and their nestlings in the catchment of the River Wye, midâ€Wales: a preliminary study by faecal analysis. Ibis, 1985, 127, 316-331.	1.0	44
54	Global patterns of diversity among the specialist birds of riverine landscapes. Freshwater Biology, 2002, 47, 695-709.	1.2	42

#	Article	IF	CITATIONS
55	Linking ecological and hydromorphological data: approaches, challenges and future prospects for riverine science. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, S125.	0.9	42
56	Is the breeding distribution of Dippers influenced by stream acidity?. Bird Study, 1985, 32, 32-39.	0.4	41
57	Restoring acidified streams in upland Wales: A modelling comparison of the chemical and biological effects of liming and reduced sulphate deposition. Environmental Pollution, 1990, 64, 67-85.	3.7	41
58	Aquatic bryophytes in Himalayan streams: testing a distribution model in a highly heterogeneous environment. Freshwater Biology, 1998, 40, 697-716.	1.2	41
59	Inter- and intraspecific differences in climatically mediated phenological change in coexisting Triturus species. Global Change Biology, 2006, 12, 1069-1078.	4.2	41
60	Global versus local change effects on a large European river. Science of the Total Environment, 2012, 441, 220-229.	3.9	38
61	The uptake of applied ecology. Journal of Applied Ecology, 2002, 39, 1-7.	1.9	37
62	Causes of episodic acidification in Alpine streams. Freshwater Biology, 2003, 48, 175-189.	1.2	37
63	Applied issues with predators and predation: editor's introduction. Journal of Applied Ecology, 2002, 39, 181-188.	1.9	35
64	The ecology of dippers Cinclus cinclus (L.) in relation to stream acidity in upland Wales: time-activity budgets and energy expenditure. Oecologia, 1990, 85, 271-280.	0.9	33
65	Effects of spring acid episodes on macroinvertebrates revealed by population data and in situ toxicity tests. Freshwater Biology, 2005, 50, 1568-1577.	1.2	33
66	Patterns of contamination by organochlorines and mercury in the eggs of two river passerines in Britain and Ireland with reference to individual PCB congeners. Environmental Pollution, 1992, 76, 233-243.	3.7	32
67	Macroinvertebrate distribution in Ecuadorian hill streams: the effects of altitude and land use. Fundamental and Applied Limnology, 2000, 149, 421-440.	0.4	32
68	Assessments of body condition in dipperscinclus cinclus:potential pitfalls in the derivation and use of condition indices based on body proportions. Ringing and Migration, 1990, 11, 31-41.	0.2	30
69	The diet of DippersCinclus cincluswintering in the catchment of the River Wye, Wales. Bird Study, 1986, 33, 36-45.	0.4	29
70	The response of macroinvertebrates to low pH and increased aluminium concentrations in Welsh streams: multiple episodes and chronic exposure. Archiv Für Hydrobiologie, 1991, 121, 115-125.	1.1	29
71	Chemical and biological effects of acid, aluminium and lime additions to a Welsh hill-stream. Environmental Pollution, 1989, 56, 283-297.	3.7	28
72	Effects of point-source PCB contamination on breeding performance and post-fledging survival in the dipper Cinclus cinclus. Environmental Pollution, 2000, 110, 505-513.	3.7	28

SJORMEROD

#	Article	IF	CITATIONS
73	The post-natal and breeding dispersal of Welsh Dippers <i>Cinclus cinclus</i> . Bird Study, 1990, 37, 18-22.	0.4	27
74	The influence of stream acidification and riparian land use on the feeding ecology of Grey Wagtails <i>Motacilla cinerea</i> in Wales. Ibis, 1991, 133, 53-61.	1.0	27
75	The micro-distribution of aquatic macroinvertebrates in the Wye river system: the result of abiotic or biotic factors?. Freshwater Biology, 1988, 20, 241-247.	1.2	26
76	A review of the likely causal pathways relating the reduced density of breeding dippers Cinclus cinclus to the acidification of upland streams. Environmental Pollution, 1992, 78, 49-55.	3.7	26
77	Patterns of macroinvertebrate distribution in relation to altitude, habitat structure and land use in streams of the Nepalese Himalaya. Archiv Für Hydrobiologie, 1995, 135, 79-100.	1.1	26
78	Factors influencing the abundance of breeding Dippers <i>Cinclus cinclus</i> in the catchment of the River Wye, midâ€Wales. Ibis, 1985, 127, 332-340.	1.0	25
79	Environmental pollutants in the eggs of Welsh Dipper;Cinclus cinclus:a potential monitor of organochlorine and mercury contamination in upland rivers. Bird Study, 1990, 37, 171-176.	0.4	24
80	The influences of habitat and seasonal sampling regimes on the ordination and classification of macroinvertebrate assemblages in the catchment of the River Wye, Wales. Hydrobiologia, 1987, 150, 143-151.	1.0	23
81	Aquatic macroinvertebrates and environmental gradients inPhragmites reedswamps: implications for conservation. Aquatic Conservation: Marine and Freshwater Ecosystems, 1997, 7, 153-163.	0.9	22
82	Priority Wetland Invertebrates as Conservation Surrogates. Conservation Biology, 2010, 24, 573-582.	2.4	22
83	Long-term change in the suitability of welsh streams for dippers Cinclus cinclus as a result of acidification and recovery: A modelling study. Environmental Pollution, 1989, 62, 171-182.	3.7	21
84	Evaluating the effects of riparian restoration on a temperate riverâ€system using standardized habitat survey. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, S96.	0.9	21
85	Biometrics, growth and sex ratios amongst Welsh DippersCinclus cinclus. Ringing and Migration, 1986, 7, 61-70.	0.2	20
86	The adaptive significance of brood size and time of breeding in the dipper <i>Cinclus cinclus</i> (Aves:) Tj ETQqC	0.0 rgBT	/Overlock 10
87	The response of macroinvertebrates to experimental episodes of low pH with different forms of aluminium, during a natural spate. Hydrobiologia, 1988, 169, 225-232.	1.0	18
88	Aspects of the breeding ecology of Welsh Grey Wagtails <i>Motacilla cinerea</i> . Bird Study, 1987, 34, 43-51.	0.4	16
89	The influence of weather on the body mass of migrating swallows <i>Hirundo rustics</i> in South Wales. Ringing and Migration, 1989, 10, 65-74.	0.2	16

90The role of acidity in the ecology of Welsh lakes and streams. Monographiae Biologicae, 1990, , 93-119.0.116

S J ORMEROD

#	Article	IF	CITATIONS
91	The effects of riparian management and physicochemistry on macroinvertebrate feeding guilds and community structure in upland British streams. Aquatic Conservation: Marine and Freshwater Ecosystems, 1992, 2, 309-324.	0.9	15
92	Local movements and population density of Water RailsRallus aquaticusin a small inland reedbed. Bird Study, 1995, 42, 82-87.	0.4	15
93	Sustainability of UK forestry: contemporary issues for the protection of freshwaters, a conclusion. Hydrology and Earth System Sciences, 2004, 8, 589-595.	1.9	15
94	Appraising riparian management effects on benthic macroinvertebrates in the Wye River system. Aquatic Conservation: Marine and Freshwater Ecosystems, 2010, 20, S73.	0.9	15
95	Aspects of the breeding biology of DippersCinclus cinclusin the southern catchment of the River Wye, Wales. Bird Study, 1985, 32, 164-169.	0.4	14
96	Time of passage, habitat use and mass change ofAcrocephaluswarblers in a South Wales reedswamp. Ringing and Migration, 1990, 11, 1-11.	0.2	14
97	Pre-migratory and migratory movements of Swallows <i>Hirundo rustica</i> in Britain and Ireland. Bird Study, 1991, 38, 170-178.	0.4	13
98	The effect of sampling frequency on chemical parameters in acid-sensitive streams. Environmental Pollution, 1996, 93, 147-157.	3.7	13
99	Censussing distribution and population of birds along upland rivers using measured ringing effort: A preliminary study. Ringing and Migration, 1988, 9, 71-82.	0.2	12
100	Further studies of the organochlorine content of Dipper <i>Cinclus cinclus</i> eggs: local differences between Welsh catchments. Bird Study, 1993, 40, 97-106.	0.4	11
101	The effects of low pH and palliative liming on beech litter decomposition in acid-sensitive streams. Hydrobiologia, 2006, 571, 373-381.	1.0	9
102	The effects of pastoral intensification on the feeding interactions of generalist predators in streams. Molecular Ecology, 2018, 27, 590-602.	2.0	9
103	Chemical and ecological evidence on the acidification of Welsh lakes and rivers. Monographiae Biologicae, 1990, , 11-25.	0.1	9
104	The diet of Green Sandpipers <i>Tringa ochropus in</i> contrasting areas of their winter range. Bird Study, 1988, 35, 25-30.	0.4	7
105	Modelling ecological impacts of the acidification of Welsh streams: temporal changes in the occurrence of macroflora and macroinvertebrates. Hydrobiologia, 1989, 185, 163-174.	1.0	7
106	The effect of catchment liming on bryophytes in upland Welsh streams, with an assessment of the communities at risk. Aquatic Conservation: Marine and Freshwater Ecosystems, 1994, 4, 297-306.	0.9	7
107	Sex ratio and maturity indicate the local dispersal and mortality of adult stoneflies. Freshwater Biology, 2006, 51, 1543-1551.	1.2	7
108	The influence of stream acidification and riparian landâ€use on the breeding biology of Grey Wagtails <i>Motacilla cinerea</i> in Wales. Ibis, 1991, 133, 286-292.	1.0	7

#	Article	IF	CITATIONS
109	Possible resource partitioning in pairs of <i>Phylloscopus</i> and <i>Acrocephalus</i> warblers during autumn migration through a south Wales reedswamp. Ringing and Migration, 1990, 11, 76-85.	0.2	6
110	The scientific strategy of the BTO ringing scheme. Ringing and Migration, 1999, 19, 129-143.	0.2	6
111	The diet of moulting DippersCinclus cinclusin the catchment of the Welsh River Wye. Bird Study, 1986, 33, 138-139.	0.4	5
112	The diet of breeding dippers Cinclus cinclus cinclus and their nestlings in southwestern Norway. Ecography, 1987, 10, 201-205.	2.1	5
113	Field experiments to assess biological effects of pollution episodes in streams. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1991, 24, 1734-1737.	0.1	5
114	Squeezed out: the consequences of riparian zone modification for specialist invertebrates. Biodiversity and Conservation, 2016, 25, 3075-3092.	1.2	5
115	Ecotoxicological studies of acidity in Welsh streams. Monographiae Biologicae, 1990, , 159-172.	0.1	5
116	Connecting the shifting currents of aquatic science and policy. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 995-1004.	0.9	4
117	Population characteristics of DipperCinclus cinclusroosts in mid and south Wales. Bird Study, 1990, 37, 165-170.	0.4	3
118	River birds in regulated rivers: cost or benefit?. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 167-170.	0.1	3
119	Acid–base status mediates the selection of organic habitats by upland stream invertebrates. Hydrobiologia, 2015, 745, 97-109.	1.0	2
120	Modelling the ecological impact of acidification: Problems and possibilities. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 1991, 24, 1738-1741.	0.1	1
121	Testing the Himalayan degradation hypothesis: does catchment land use affect river biota?. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 895-900.	0.1	1
122	Modelling the ecological impact of changing acidity in Welsh streams. Monographiae Biologicae, 1990, , 279-298.	0.1	1
123	Effect of habitat structure on the distribution of Himalayan river birds. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 175-177.	0.1	0

124 The Utility of Biological Indicators of Stream Acidity in Wales. , 1992, , 1341-1354.