Zhipeng Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11038048/publications.pdf Version: 2024-02-01

ZHIDENC MENC

#	Article	IF	CITATIONS
1	Coâ€occurrence of <i>BAP1</i> and <i>SF3B1</i> mutations in uveal melanoma induces cellular senescence. Molecular Oncology, 2022, 16, 607-629.	4.6	12
2	The Hippo pathway mediates Semaphorin signaling. Science Advances, 2022, 8, .	10.3	6
3	Mechanoregulation of YAP and TAZ in Cellular Homeostasis and Disease Progression. Frontiers in Cell and Developmental Biology, 2021, 9, 673599.	3.7	108
4	Induction of AP-1 by YAP/TAZ contributes to cell proliferation and organ growth. Genes and Development, 2020, 34, 72-86.	5.9	68
5	Heat stress activates YAP/TAZ to induce the heat shock transcriptome. Nature Cell Biology, 2020, 22, 1447-1459.	10.3	56
6	Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes InÂVivo Persistence and Enhances Anti-tumor Activity. Cell Stem Cell, 2020, 27, 224-237.e6.	11.1	177
7	Critical roles of phosphoinositides and NF2 in Hippo pathway regulation. Genes and Development, 2020, 34, 511-525.	5.9	39
8	Identification of the novel Np17 oncogene in human leukemia. Aging, 2020, 12, 23647-23667.	3.1	3
9	STRIPAK integrates upstream signals to initiate the Hippo kinase cascade. Nature Cell Biology, 2019, 21, 1565-1577.	10.3	98
10	The Hippo Pathway: Biology and Pathophysiology. Annual Review of Biochemistry, 2019, 88, 577-604.	11.1	708
11	RAP2 mediates mechanoresponses of the Hippo pathway. Nature, 2018, 560, 655-660.	27.8	266
12	A tiling-deletion-based genetic screen for cis-regulatory element identification in mammalian cells. Nature Methods, 2017, 14, 629-635.	19.0	217
13	Osmotic stressâ€induced phosphorylation by <scp>NLK</scp> at Ser128 activates <scp>YAP</scp> . EMBO Reports, 2017, 18, 72-86.	4.5	112
14	Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation. Nature Cell Biology, 2017, 19, 996-1002.	10.3	153
15	Thromboxane A2 Activates YAP/TAZ Protein to Induce Vascular Smooth Muscle Cell Proliferation and Migration. Journal of Biological Chemistry, 2016, 291, 18947-18958.	3.4	88
16	Characterization of Hippo Pathway Components by Gene Inactivation. Molecular Cell, 2016, 64, 993-1008.	9.7	219
17	The Hippo pathway in intestinal regeneration and disease. Nature Reviews Gastroenterology and Hepatology, 2016, 13, 324-337.	17.8	204
18	A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Research, 2016, 26, 397-405.	5.5	111

ZHIPENG MENG

#	Article	IF	CITATIONS
19	Mechanisms of Hippo pathway regulation. Genes and Development, 2016, 30, 1-17.	5.9	1,224
20	A YAP/TAZ-induced feedback mechanism regulates Hippo pathway homeostasis. Genes and Development, 2015, 29, 1271-1284.	5.9	278
21	miR-26a enhances autophagy to protect against ethanol-induced acute liver injury. Journal of Molecular Medicine, 2015, 93, 1045-1055.	3.9	52
22	MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. Journal of Clinical Investigation, 2015, 125, 2497-2509.	8.2	195
23	Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nature Cell Biology, 2015, 17, 500-510.	10.3	421
24	Alternative Wnt Signaling Activates YAP/TAZ. Cell, 2015, 162, 780-794.	28.9	528
25	MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nature Communications, 2015, 6, 8357.	12.8	388
26	Hippo Pathway Regulation of Gastrointestinal Tissues. Annual Review of Physiology, 2015, 77, 201-227.	13.1	103
27	Small-molecule induction of phospho-eIF4E sumoylation and degradation via targeting its phosphorylated serine 209 residue. Oncotarget, 2015, 6, 15111-15121.	1.8	14
28	Mutant Gq/11 Promote Uveal Melanoma Tumorigenesis by Activating YAP. Cancer Cell, 2014, 25, 822-830.	16.8	391
29	Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-κB. Scientific Reports, 2014, 4, 5750.	3.3	270
30	GPBAR1/TGR5 Mediates Bile Acid-Induced Cytokine Expression in Murine Kupffer Cells. PLoS ONE, 2014, 9, e93567.	2.5	61
31	Bile Acid Receptors and Liver Cancer. Current Pathobiology Reports, 2013, 1, 29-35.	3.4	67
32	Berbamine Inhibits the Growth of Liver Cancer Cells and Cancer-Initiating Cells by Targeting Ca2+/Calmodulin-Dependent Protein Kinase II. Molecular Cancer Therapeutics, 2013, 12, 2067-2077.	4.1	68
33	Hepatocarcinogenesis in FXRâ^'/â^' Mice Mimics Human HCC Progression That Operates through HNF1α Regulation of FXR Expression. Molecular Endocrinology, 2012, 26, 775-785.	3.7	97
34	CaMKII \hat{I}^3 , a critical regulator of CML stem/progenitor cells, is a target of the natural product berbamine. Blood, 2012, 120, 4829-4839.	1.4	86
35	Deletion of IFNγ enhances hepatocarcinogenesis in FXR knockout mice. Journal of Hepatology, 2012, 57, 1004-1012.	3.7	25
36	Farnesoid X Receptor Protects Hepatocytes From Injury by Repressing miR-199a-3p, Which Increases Levels of LKB1. Gastroenterology, 2012, 142, 1206-1217.e7.	1.3	75

ZHIPENG MENG

#	Article	IF	CITATIONS
37	Nuclear bile acid receptor FXR in the hepatic regeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 888-892.	3.8	42
38	Insufficient bile acid signaling impairs liver repair in CYP27â^'/â^' mice. Journal of Hepatology, 2011, 55, 885-895.	3.7	40
39	The nuclear receptor CAR modulates alcohol-induced liver injury. Laboratory Investigation, 2011, 91, 1136-1145.	3.7	21
40	TGR5: A Novel Target for Weight Maintenance and Glucose Metabolism. Experimental Diabetes Research, 2011, 2011, 1-5.	3.8	89
41	miR-194 is a marker of hepatic epithelial cells and suppresses metastasis of liver cancer cells in mice. Hepatology, 2010, 52, 2148-2157.	7.3	182
42	FXR Regulates Liver Repair after CCl4-Induced Toxic Injury. Molecular Endocrinology, 2010, 24, 886-897.	3.7	100
43	Significance and Mechanism of CYP7a1 Gene Regulation during the Acute Phase of Liver Regeneration. Molecular Endocrinology, 2009, 23, 137-145.	3.7	69