Qi Dai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1103768/publications.pdf

Version: 2024-02-01

120	1,565	20	32
papers	citations	h-index	g-index
122	122	122	1025
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Immersed boundary method for multiphase transport phenomena. Reviews in Chemical Engineering, 2022, 38, 363-405.	4.4	14
2	Mathematical modeling of shear-activated targeted nanoparticle drug delivery for the treatment of aortic diseases. Biomechanics and Modeling in Mechanobiology, 2022, 21, 221-230.	2.8	8
3	Hemodynamic effects of stent-graft introducer sheath during thoracic endovascular aortic repair. Biomechanics and Modeling in Mechanobiology, 2022, 21, 419-431.	2.8	8
4	Large Eddy Simulation of the Layout Effects on Wind Farm Performance Coupling With Wind Turbine Control Strategies. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	7
5	Three-Dimensional Computation Fluid Dynamics Simulation of CO Methanation Reactor with Immersed Tubes. Energies, 2022, 15, 321.	3.1	1
6	Numerical Simulation of a 10 kW Gas-Fueled Chemical Looping Combustion Unit. Energies, 2022, 15, 1973.	3.1	2
7	Experimental and Kinetic Studies on Tobacco Pyrolysis under a Wide Range of Heating Rates. ACS Omega, 2022, 7, 1420-1427.	3.5	8
8	Computational Prediction of Thrombosis in Food and Drug Administration's Benchmark Nozzle. Frontiers in Physiology, 2022, 13, 867613.	2.8	4
9	Component quantification of aortic blood flow energy loss using computational fluid-structure interaction hemodynamics. Computer Methods and Programs in Biomedicine, 2022, 221, 106826.	4.7	13
10	Evaluation of the spatiotemporal unsteady characteristics of the tip leakage vortex based on a direct numerical simulation database. Physics of Fluids, 2022, 34, .	4.0	8
11	Direct numerical simulations of turbulent non-premixed flames: Assessment of turbulence within swirling flows. Physics of Fluids, 2021, 33, 015112.	4.0	8
12	2-D and 3-D measurements of flame stretch and turbulence–flame interactions in turbulent premixed flames using DNS. Journal of Fluid Mechanics, 2021, 913, .	3.4	11
13	Predictive models for flame evolution using machine learning: <i>A priori</i> assessment in turbulent flames without and with mean shear. Physics of Fluids, 2021, 33, .	4.0	16
14	Flame edge structures and dynamics in planar turbulent non-premixed inclined slot-jet flames impinging at a wall. Journal of Fluid Mechanics, 2021, 920, .	3.4	6
15	Direct numerical simulation of a supercritical hydrothermal flame in a turbulent jet. Journal of Fluid Mechanics, 2021, 922, .	3.4	4
16	Effects of tip clearance size on vortical structures and turbulence statistics in tip-leakage flows: A direct numerical simulation study. Physics of Fluids, 2021, 33, .	4.0	22
17	A Priori Modeling of NO Formation with Principal Component Analysis and the Convolutional Neural Network in the Context of Large Eddy Simulation. Energy & Eddy Simulation. Fixed States 1.	5.1	4
18	Fluctuations of thermodynamic variables in compressible isotropic turbulence laden with inertial particles. Physics of Fluids, 2021, 33, .	4.0	5

#	Article	IF	CITATIONS
19	An integrated fluid-chemical model toward modeling the thrombus formation in an idealized model of aortic dissection. Computers in Biology and Medicine, 2021, 136, 104709.	7.0	8
20	Effects of heat release on turbulence characteristics in a three-dimensional spatially developing supersonic droplet-laden mixing layer. Fuel, 2021, 301, 121030.	6.4	4
21	Fluidâ€structure interaction: Insights into biomechanical implications of endograft after thoracic endovascular aortic repair. Computers in Biology and Medicine, 2021, 138, 104882.	7.0	18
22	Effect of wall boundary conditions on the nonlinear response of turbulent premixed flames. AlP Advances, 2021, 11 , .	1.3	2
23	3D Unsteady Simulation of a Scale-Up Methanation Reactor with Interconnected Cooling Unit. Energies, 2021, 14, 7095.	3.1	1
24	Three-Dimensional Simulation of the Methanation Process in a Circulating Fluidized-Bed Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 16417-16429.	3.7	2
25	Biomechanical implications of the fenestration structure after thoracic endovascular aortic repair. Journal of Biomechanics, 2020, 99, 109478.	2.1	20
26	Hemodynamic consequences of TEVAR with in situ double fenestrations of left carotid artery and left subclavian artery. Medical Engineering and Physics, 2020, 76, 32-39.	1.7	11
27	Hybrid Flamelet/Progress Variable Approach for NO Prediction in Pulverized Coal Flames. Energy & Energy & Fuels, 2020, 34, 10000-10009.	5.1	0
28	Direct numerical simulation of particle-laden turbulent boundary layers without and with combustion. Physics of Fluids, 2020, 32, 105108.	4.0	12
29	Eulerian–Lagrangian direct numerical simulation of preferential accumulation of inertial particles in a compressible turbulent boundary layer. Journal of Fluid Mechanics, 2020, 903, .	3.4	18
30	Particle-Scale Simulation of Solid Mixing Characteristics of Binary Particles in a Bubbling Fluidized Bed. Energies, 2020, 13, 4442.	3.1	10
31	Numerical Investigation of a Syngas-Fueled Chemical Looping Combustion System. Energy & System 2020, 34, 12800-12809.	5.1	5
32	A lower-dimensional approximation model of turbulent flame stretch and its related quantities with machine learning approaches. Physics of Fluids, 2020, 32, .	4.0	13
33	Fully resolved simulation of a shockwave interacting with randomly clustered particles via a ghost-cell immersed boundary method. Physics of Fluids, 2020, 32, 066105.	4.0	9
34	Dual-Scale Flamelet/Progress Variable Approach for Prediction of Polycyclic Aromatic Hydrocarbons Formation under the Condition of Coal Combustion. Energy & Energy & 2020, 34, 10010-10018.	5.1	2
35	Large eddy simulation of turbulent partially premixed flames with inhomogeneous inlets using the dynamic second-order moment closure model. Combustion Theory and Modelling, 2020, 24, 705-724.	1.9	3
36	Molecular Dynamic Study of a Pyrolysis Process of a Coal Particle in Different Environments. Journal of Energy Resources Technology, Transactions of the ASME, 2020, 142, .	2.3	5

#	Article	IF	Citations
37	Effect of Operating Parameters on Gasâ€Solid Hydrodynamics and Heat Transfer in a Spouted Bed. Chemical Engineering and Technology, 2019, 42, 2310-2320.	1.5	7
38	Direct numerical simulation of a three-dimensional spatially evolving compressible mixing layer laden with particles. II. Turbulence anisotropy and growth rate. Physics of Fluids, 2019, 31, 083303.	4.0	17
39	Direct numerical simulation of a three-dimensional spatially evolving compressible mixing layer laden with particles. I. Turbulent structures and asymmetric properties. Physics of Fluids, 2019, 31, 083302.	4.0	7
40	Estimating biomass major chemical constituents from ultimate analysis using a random forest model. Bioresource Technology, 2019, 288, 121541.	9.6	49
41	Drag enhancement and turbulence attenuation by small solid particles in an unstably stratified turbulent boundary layer. Physics of Fluids, 2019, 31, 063303.	4.0	16
42	A Primary Computational Fluid Dynamics Study of Pre- and Post-TEVAR With Intentional Left Subclavian Artery Coverage in a Type B Aortic Dissection. Journal of Biomechanical Engineering, 2019, 141, .	1.3	23
43	Investigation of supersonic turbulent flows over a sphere by fully resolved direct numerical simulation. Physics of Fluids, 2019, 31, .	4.0	12
44	Numerical simulation of two-phase non-Newtonian blood flow with fluid-structure interaction in aortic dissection. Computer Methods in Biomechanics and Biomedical Engineering, 2019, 22, 620-630.	1.6	55
45	Effects of in situ fenestration stent-graft of left subclavian artery on the hemodynamics after thoracic endovascular aortic repair. Vascular, 2019, 27, 369-377.	0.9	10
46	Analysis and flamelet modelling for laminar pulverised coal combustion considering the wall effect. Combustion Theory and Modelling, 2019, 23, 353-375.	1.9	3
47	An <i>a priori</i> study of different tabulation methods for turbulent pulverised coal combustion. Combustion Theory and Modelling, 2018, 22, 505-530.	1.9	8
48	Fully resolved simulations of single char particle combustion using a ghostâ€eell immersed boundary method. AICHE Journal, 2018, 64, 2851-2863.	3.6	19
49	Sheet, ligament and droplet formation in swirling primary atomization. AIP Advances, 2018, 8, .	1.3	21
50	Direct numerical simulation of turbulent flow and heat transfer in a spatially developing turbulent boundary layer laden with particles. Journal of Fluid Mechanics, 2018, 845, 417-461.	3.4	15
51	Direct numerical simulation of particle dispersion in a three-dimensional spatially developing compressible mixing layer. Physics of Fluids, 2018, 30, .	4.0	22
52	Buoyancy effects in an unstably stratified turbulent boundary layer flow. Physics of Fluids, 2017, 29, 015104.	4.0	9
53	Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction. Physics of Fluids, 2017, 29, 053301.	4.0	15
54	Large eddy simulation of piloted pulverised coal combustion using extended flamelet/progress variable model. Combustion Theory and Modelling, 2017, 21, 925-953.	1.9	44

#	Article	IF	CITATIONS
55	Transient Growth and Receptivity of Steady Disturbances to Irregular Rough Walls. Journal of Fluids Engineering, Transactions of the ASME, 2017, 139, .	1.5	2
56	Direct numerical simulation of turbulenceÂmodulation by particles in compressibleÂisotropic turbulence. Journal of Fluid Mechanics, 2017, 832, 438-482.	3.4	26
57	Evaluation of flamelet/progress variable model for laminar pulverized coal combustion. Physics of Fluids, 2017, 29, .	4.0	45
58	Large-eddy simulation and experimental study on the turbulent wake flow characteristics of a two-bladed wind turbine. Science China Technological Sciences, 2017, 60, 1861-1869.	4.0	8
59	Preferential frequency and size effect of the Brownian force acting on a nanoparticle. Journal of Fluid Mechanics, 2017, 828, 648-660.	3.4	1
60	Numerical analysis on shock-cylinder interaction using immersed boundary method. Science China Technological Sciences, 2017, 60, 1423-1432.	4.0	8
61	Population Balance Equation of Cohesive Particle Flow in a Circulating Fluidized Bed. Chemical Engineering and Technology, 2017, 40, 1544-1551.	1.5	6
62	Numerical Simulation of CO Methanation for the Production of Synthetic Natural Gas in a Fluidized Bed Reactor. Energy & Samp; Fuels, 2017, 31, 10267-10273.	5.1	13
63	Extended HPM–DEM coupled simulation of drainage of square particles in a 2D hopper flow. AICHE Journal, 2016, 62, 1863-1876.	3.6	7
64	Direct numerical simulation of heat transfer in a spatially developing turbulent boundary layer. Physics of Fluids, 2016, 28, .	4.0	26
65	Modulation of turbulence by dispersed solid particles in a spatially developing flat-plate boundary layer. Journal of Fluid Mechanics, 2016, 802, 359-394.	3.4	39
66	Particleâ€resolved direct numerical simulation of gas–solid dynamics in experimental fluidized beds. AICHE Journal, 2016, 62, 1917-1932.	3.6	74
67	Direct numerical simulation on supersonic turbulent reacting and non-reacting spray jet in heated coflow. Fuel, 2016, 164, 267-276.	6.4	19
68	CFD simulations of flow and dust dispersion in a realistic urban area. Engineering Applications of Computational Fluid Mechanics, 2016, 10, 228-242.	3.1	11
69	Numerical study of the effects of particles on the near wake around a circular cylinder. International Journal of Computational Fluid Dynamics, 2015, 29, 150-160.	1.2	9
70	An improved movingâ€leastâ€squares reconstruction for immersed boundary method. International Journal for Numerical Methods in Engineering, 2015, 104, 789-804.	2.8	18
71	CFDâ€DEM simulation of the spout–annulus interaction in a 3D spouted bed with a conical base. Canadian Journal of Chemical Engineering, 2014, 92, 1130-1138.	1.7	11
72	Direct numerical simulation of confined swirling jets. International Journal of Computational Fluid Dynamics, 2014, 28, 76-88.	1.2	7

#	Article	IF	CITATIONS
73	LBE simulation of coherent vortex motion and heat transfer in jets of cross flow. International Journal of Computational Fluid Dynamics, 2014, 28, 383-392.	1.2	4
74	Particleâ€scale investigation of the solid dispersion and residence properties in a 3â€D spoutâ€fluid bed. AICHE Journal, 2014, 60, 2788-2804.	3.6	65
75	Coupled Computational Fluid Dynamics and Discrete Element Method Study of the Solid Dispersion Behavior in an Internally Circulating Fluidized Bed. Industrial & Dispersion Chemistry Research, 2014, 53, 6759-6772.	3.7	8
76	Particle Dispersion and Circulation Patterns in a 3D Spouted Bed with or without Draft Tube. Industrial & Draft Tube. 1013, 52, 9620-9631.	3.7	44
77	Three-Dimensional Modeling of Gas–Solid Motion in a Slot-Rectangular Spouted Bed with the Parallel Framework of the Computational Fluid Dynamics–Discrete Element Method Coupling Approach. Industrial & Discrete Element Method Coupling Approach.	3.7	20
78	DNS analysis of a three-dimensional supersonic turbulent lifted jet flame. Fuel, 2013, 108, 691-698.	6.4	35
79	Computational Fluid Dynamics-Discrete Element Method Investigation of Solid Mixing Characteristics in an Internally Circulating Fluidized Bed. Industrial & Engineering Chemistry Research, 2013, 52, 7556-7568.	3.7	57
80	A Method of Tracing Particles in Irregular Unstructured Grid System. Journal of Computational Multiphase Flows, 2013, 5, 231-237.	0.8	4
81	Correlation analysis on the SGS velocity between phases in an isotropic gas-particle two-phase flow with FDF model. Journal of Thermal Science, 2012, 21, 447-451.	1.9	0
82	Numerical prediction of indoor airborne particle concentration in a test chamber with drift-flux model. Journal of Thermal Science, 2011, 20, 161-166.	1.9	4
83	Direct numerical simulation of a particle-laden low Reynolds number turbulent round jet. International Journal of Multiphase Flow, 2011, 37, 539-554.	3.4	33
84	Numerical study of solid particle erosion on the tubes near the side walls in a duct with flow past an aligned tube bank. AICHE Journal, 2010, 56, 66-78.	3.6	1
85	Direct Numerical Simulation of Subsonic Round Turbulent Jet. Flow, Turbulence and Combustion, 2010, 84, 669-686.	2.6	40
86	Numerical investigation of the effect of sub-grid scale eddies on the dispersed particles by LES/FDF model. Science China Technological Sciences, 2010, 53, 1304-1308.	4.0	6
87	Numerical Simulation of Particle Dispersion in the Wake of a Circular Cylinder. Aerosol Science and Technology, 2009, 43, 174-187.	3.1	24
88	LES/FDF simulation of particle dispersion in a gas-particle two phase plane wake flow. Science in China Series D: Earth Sciences, 2009, 52, 2943-2951.	0.9	7
89	On coherent structures in a three-dimensional transitional plane jet. Science in China Series D: Earth Sciences, 2008, 51, 386-396.	0.9	4
90	Parallel computing strategy for the simulation of particulate flows with immersed boundary method. Science in China Series D: Earth Sciences, 2008, 51, 1169-1176.	0.9	7

#	Article	IF	Citations
91	Transitional phenomenon of particle dispersion in gas-solid two-phase flows. Science Bulletin, 2007, 52, 408-417.	1.7	6
92	Direct numerical simulation of hydrogen turbulent lifted jet flame in a vitiated coflow. Science Bulletin, 2007, 52, 2147-2156.	1.7	9
93	Three-dimensional reconstruction of the human upper airway from computed tomography images. , 2006, , .		0
94	Multi-objective optimization of the coal combustion performance with artificial neural networks and genetic algorithms. International Journal of Energy Research, 2005, 29, 499-510.	4.5	45
95	The effect of streamwise vortex structures on the particle distribution in the roll-up. Journal of Visualization, 2005, 8, 198-198.	1.8	0
96	Visualization of vortex shedding and particle dispersion in two-phase plate wake. Journal of Visualization, 2005, 8, 3-3.	1.8	3
97	Large eddy simulation of coherent structure of impinging jet. Journal of Thermal Science, 2005, 14, 150-155.	1.9	14
98	Direct numerical simulation of a near-field particle-laden plane turbulent jet. Physical Review E, 2004, 70, 026303.	2.1	31
99	Flow visualization of the turbulent jet by Direct numerical simulation. Journal of Visualization, 2004, 7, 110-110.	1.8	0
100	Coherent structures of the particle-laden turbulent round jet at different reynolds number. Journal of Visualization, 2004, 7, 177-177.	1.8	0
101	DNS of the turbulence modulation by dispersed particles in compressible spatially developing two-phase jets. Progress in Natural Science: Materials International, 2004, 14, 817-821.	4.4	0
102	Direct numerical simulation of a particle-laden weak-shearing plane jet*. Progress in Natural Science: Materials International, 2004, 14, 247-256.	4.4	0
103	Study on fluid flow characteristics in different load cases in tangentially fired furnaces. Chemical Engineering Communications, 2003, 190, 1348-1370.	2.6	0
104	Modulation on coherent vortex structures by dispersed solid particles in a three-dimensional mixing layer. Physical Review E, 2003, 68, 036309.	2.1	21
105	Direct numerical simulation on the particle flow in the wake of circular cylinder*. Progress in Natural Science: Materials International, 2003, 13, 379-384.	4.4	3
106	Direct simulation of particle dispersion in a three-dimensional temporal mixing layer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457, 2151-2166.	2.1	19
107	Numerical simulation of swirling gas-solid two phase flow through a pipe expansion. Journal of Thermal Science, 2001, 10, 38-45.	1.9	0
108	An experimental investigation of a new method for protecting bends from erosion in gas-particle flows. Journal of Thermal Science, 2000, 9, 158-162.	1.9	2

#	Article	IF	CITATIONS
109	PREDICTION OF DENSE TURBULENT PARTICLE LADEN RISER FLOW WITH A EULERIAN AND LAGRANGIAN COMBINED MODEL. Chemical Engineering Communications, 2000, 179, 201-218.	2.6	3
110	On a eulerian and lagrangian combined model in dense particleâ€laden riser flow. Canadian Journal of Chemical Engineering, 1999, 77, 1113-1120.	1.7	0
111	Modeling of Combustion Process in 600 MW Utility Boiler Using Comprehensive Models and Its Experimental Validation. Energy & Samp; Fuels, 1999, 13, 1051-1057.	5.1	21
112	Numerical Simulation and Experimental Study of Two-Phase Flow in a Vertical Pipe. Aerosol Science and Technology, 1997, 27, 281-292.	3.1	10
113	PARTICLE CONCENTRATION AND SIZE MEASUREMENTS IN TWO-PHASE TURBULENT COAXIAL JETS. Chemical Engineering Communications, 1997, 156, 115-129.	2.6	6
114	Laser Diffraction Method Measurements of Particle-Gas Dispersion Effects in a Coaxial Jet. Aerosol Science and Technology, 1997, 26, 447-458.	3.1	3
115	NUMERICAL SIMULATION OF THE EFFECT OF VELOCITY RATIO ON THE FLOW CHARACTERISTICS IN A COAXIAL JET. Chemical Engineering Communications, 1996, 147, 85-98.	2.6	1
116	PREDICTION OF A GAS-PARTICLE TURBULENT JET WITH THE FLUCTUATION-SPECTRUM-RANDOM-TRAJECTORY MODEL. Chemical Engineering Communications, 1995, 135, 101-112.	2.6	0
117	NUMERICAL PREDICTION OF A RECTANGULAR TURBULENT JET IN A CROSS FLOW. Chemical Engineering Communications, 1992, 117, 293-306.	2.6	0
118	NUMERICAL CALCULATIONS OF TUBE BUNDLES EROSION BY TURBULENT PARTICLE-LADEN GAS FLOWS. Chemical Engineering Communications, 1991, 104, 209-225.	2.6	4
119	NUMERICAL PREDICTION OF TUBE ROW EROSION BY COAL ASH IMPACTION. Chemical Engineering Communications, 1990, 95, 75-88.	2.6	10
120	NUMERICAL MODELING AND EXPERIMENTAL STUDY OF PARTICLE-LADEN COAXIAL JETS. Chemical Engineering Communications, 1989, 86, 55-71.	2.6	5