Zhiqiang Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1103732/publications.pdf

Version: 2024-02-01

567281 677142 32 542 15 22 citations h-index g-index papers 32 32 32 877 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of different anchoring groups in phenothiazinyl-benzothiadiazolyl dyes for dye-sensitized solar cells. Synthetic Metals, 2022, 287, 117067.	3.9	5
2	Structure and luminescent properties of Mn4+-activated Li2Mg2TiO5 with broadband deep-red emission. Journal of Materials Science: Materials in Electronics, 2022, 33, 15879-15893.	2.2	4
3	Room-temperature preparation of TiO2/graphene composite photoanodes for efficient dye-sensitized solar cells. Journal of Colloid and Interface Science, 2021, 586, 326-334.	9.4	14
4	Enhancing emission property of red phosphor Sr2MgGe2O7:Mn4+ via Ba2+ doping. Journal of Materials Science: Materials in Electronics, 2021, 32, 19832-19845.	2.2	3
5	New phenothiazine dyes containing benzothiadiazole-acceptor for dye-sensitized solar cells. Dyes and Pigments, 2021, 194, 109664.	3.7	8
6	Carbazol-phenyl-phenothiazine-based sensitizers for dye-sensitized solar cells. Journal of Materials Chemistry A, 2021, 9, 26311-26322.	10.3	6
7	Lowâ€Cost and Extraâ€Simple Preparation of Porous NiS ₂ Counter Electrode for Highâ€Efficiency Dyeâ€Sensitized Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900724.	1.8	9
8	Role of Modifying Photoanodes by Organic Titanium on Charge Collection Efficiency Enhancement in Dyeâ€Sensitized Solar Cells. Advanced Engineering Materials, 2020, 22, 1901071.	3.5	8
9	Position engineering of cyanoacrylic-acid anchoring group in a dye for DSSC applications. Dyes and Pigments, 2020, 180, 108470.	3.7	18
10	A new dibenzo[g.p]chrysene derivative as an efficient anode buffer for inverted polymer solar cells. Organic Electronics, 2019, 74, 269-275.	2.6	10
11	Mechanism Investigation of the Postnecking Treatment to WO ₃ Photoelectrodes. ACS Applied Energy Materials, 2018, 1, 4670-4677.	5.1	14
12	Effects of meta or para connected organic dyes for dye-sensitized solar cell. Dyes and Pigments, 2018, 158, 165-174.	3.7	40
13	In situ preparation of hierarchically structured dual-layer TiO2 films by E-spray method for efficient dye-sensitized solar cells. Organic Electronics, 2017, 49, 135-141.	2.6	15
14	Structure–Property Study on Two New D–A Type Materials Comprising Pyridazine Moiety and the OLED Application as Host. ACS Applied Materials & Diterfaces, 2017, 9, 26242-26251.	8.0	29
15	Pure aromatic hydrocarbons with meta-linked phenyl-core and perihedral fluorene substitutions with/without inert groups of tert-butyl: bipolar hosts for blue phosphorescence. Science China Chemistry, 2017, 60, 223-230.	8.2	6
16	A Bipolar and Small Singletâ€Triplet Splitting Energy Host with Triplet Energy Lower Than a Blue Phosphor for Phosphorescent OLEDs in Panchromatic Range. Chinese Journal of Chemistry, 2016, 34, 763-770.	4.9	5
17	New iridium complexes bearing C^N=N ligand for high efficiency OLEDs. Journal of Luminescence, 2016, 180, 51-57.	3.1	17
18	Labelâ€Free DNA Sensors Based on Fieldâ€Effect Transistors with Semiconductor of Carbon Materials. Chinese Journal of Chemistry, 2015, 33, 828-841.	4.9	6

#	Article	IF	CITATION
19	Pure aromatic hydrocarbons with rigid and bulky substituents as bipolar hosts for blue phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 9137-9144.	5.5	24
20	Exciton blocking and dissociation by a p-type anode buffer in small molecule bulk heterojunction organic photovoltaic with small ratio donor of phosphorescent material. Organic Electronics, 2015, 23, 11-16.	2.6	8
21	Influences of fluorination on homoleptic iridium complexes with Câ^§N=N type ligand to material properties, ligand orientation and OLED performances. Science China Chemistry, 2015, 58, 640-649.	8.2	16
22	Convenient and inexpensive determination of optical constants and film thickness of blended organic thin film. Science China: Physics, Mechanics and Astronomy, 2015, 58, 1-7.	5.1	2
23	Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system. Solar Energy Materials and Solar Cells, 2014, 121, 119-125.	6.2	49
24	Heat revolution on photophysical properties and electroluminescent performance of Ir(ppy)3-doped bipolar host of oxadiazole derivatives attaching with inert group of tert-butyl moiety. Science China Chemistry, 2014, 57, 849-856.	8.2	16
25	Universal Strategy for Cheap and Colorâ€Stable Singleâ€EML WOLEDs Utilizing Two Complementaryâ€Color Nondoped Emitters without Energy Transfer. Advanced Optical Materials, 2014, 2, 938-944.	7. 3	21
26	Electrospray Dense Suspensions of TiO ₂ Nanoparticles for Dye Sensitized Solar Cells. Aerosol Science and Technology, 2013, 47, 1302-1309.	3.1	23
27	Structure optimization of organic planar heterojunction solar cells. Journal Physics D: Applied Physics, 2013, 46, 195105.	2.8	10
28	More than Restriction of Twisted Intramolecular Charge Transfer: Three-Dimensional Expanded #-Shaped Cross-Molecular Packing for Emission Enhancement in Aggregates. Journal of Physical Chemistry C, 2012, 116, 12187-12195.	3.1	65
29	A thermal stable cathode buffer based on an inexpensive tetranuclear zinc(II) complex for organic photovoltaic devices. Science China Chemistry, 2012, 55, 2562-2566.	8.2	2
30	Organic thin-film solar cells: Devices and materials. Science China Chemistry, 2012, 55, 553-578.	8.2	22
31	Recent progress in the numerical modeling for organic thin film solar cells. Science China: Physics, Mechanics and Astronomy, 2011, 54, 375-387.	5.1	31
32	Molecular hosts for triplet emitters in organic light-emitting diodes and the corresponding working principle. Science China Chemistry, 2010, 53, 1679-1694.	8.2	36