Jungho Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11036459/publications.pdf

Version: 2024-02-01

623734 477307 34 890 14 29 citations g-index h-index papers 34 34 34 573 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Numerical study on subcooled water jet impingement cooling on superheated surfaces. Case Studies in Thermal Engineering, 2022, 32, 101883.	5.7	7
2	Role of quenching method on cooling rate and microstructure of steels: Variations in coolant and its flow arrangement. International Journal of Heat and Mass Transfer, 2022, 189, 122702.	4.8	3
3	Effect of wettability on pool boiling heat transfer with copper microporous coated surface. International Journal of Heat and Mass Transfer, 2022, 194, 123059.	4.8	9
4	Modeling and optimization of hydrophobic surfaces for a two-phase closed thermosyphon. International Journal of Heat and Mass Transfer, 2021, 165, 120680.	4.8	7
5	Boiling-driven, wickless, and orientation-independent thermal ground plane. International Journal of Heat and Mass Transfer, 2021, 167, 120817.	4.8	20
6	Effects of materials and microstructures on pool boiling of saturated water from metallic surfaces. International Journal of Thermal Sciences, 2021, 165, 106929.	4.9	13
7	Enhancing heat transfer performance of a two-phase closed thermosyphon using a polymer-coated hydrophobic condenser. Applied Thermal Engineering, 2021, 196, 117350.	6.0	6
8	Effects and limitations of superhydrophobic surfaces on the heat transfer performance of a two-phase closed thermosyphon. International Journal of Heat and Mass Transfer, 2021, 176, 121446.	4.8	7
9	Effect of integrated copper pad on the performance of boiling-driven wickless thermal ground plane. Applied Thermal Engineering, 2021, 199, 117595.	6.0	6
10	Dropwise condensation of acetone and ethanol for a high-performance lubricant-impregnated thermosyphon. International Journal of Heat and Mass Transfer, 2021, 181, 121871.	4.8	6
11	Evaporation of highly wetting fluids on aluminum microporous coating. International Journal of Heat and Mass Transfer, 2020, 163, 120451.	4.8	4
12	Capillary evaporation of water from aluminum high-temperature conductive microporous coating. International Journal of Heat and Mass Transfer, 2020, 153, 119660.	4.8	10
13	Enhanced thermal performance of a thermosyphon for waste heat recovery: Microporous coating at evaporator and hydrophobic coating at condenser. Applied Thermal Engineering, 2020, 175, 115332.	6.0	23
14	Effects of hydrophobic and superhydrophobic coatings of a condenser on the thermal performance of a two-phase closed thermosyphon. International Journal of Heat and Mass Transfer, 2019, 144, 118706.	4.8	24
15	Development of a stable Boehmite layer on aluminum surfaces for improved pool boiling heat transfer in water. Applied Thermal Engineering, 2019, 156, 541-549.	6.0	33
16	Quench subcooled-jet impingement boiling: Staggered-array jets enhancement. International Journal of Heat and Mass Transfer, 2019, 136, 888-898.	4.8	14
17	Enhancement of pool boiling heat transfer in water on aluminum surface with high temperature conductive microporous coating. International Journal of Heat and Mass Transfer, 2019, 132, 772-781.	4.8	28
18	Effect of sintered microporous coating at the evaporator on the thermal performance of a two-phase closed thermosyphon. International Journal of Heat and Mass Transfer, 2019, 131, 1064-1074.	4.8	29

#	Article	IF	CITATIONS
19	Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces. International Journal of Heat and Mass Transfer, 2018, 118, 802-811.	4.8	94
20	Boiling and condensation heat transfer of inclined two-phase closed thermosyphon with various filling ratios. Applied Thermal Engineering, 2018, 145, 328-342.	6.0	52
21	Quench subcooled-jet impingement boiling: Two interacting-jet enhancement. International Journal of Heat and Mass Transfer, 2018, 126, 1302-1314.	4.8	17
22	Effects of surface wettability on pool boiling of water using super-polished silicon surfaces. International Journal of Heat and Mass Transfer, 2018, 127, 1128-1137.	4.8	42
23	Flow Visualization inside Thermosyphon for Measuring Heat Transfer Limit. Journal of Heat Transfer, 2017, 139, .	2.1	4
24	Effect of Surface Roughness on Pool Boiling Heat Transfer of Water on a Superhydrophilic Aluminum Surface. Journal of Heat Transfer, 2017, 139, .	2.1	72
25	Quasi-steady front in quench subcooled-jet impingement boiling: Experiment and analysis. International Journal of Heat and Mass Transfer, 2017, 113, 622-634.	4.8	33
26	Boiling Visualization of Two Adjacent Impinging Jets on Hot Steel Plate. Journal of Heat Transfer, 2016, 138, .	2.1	1
27	Effect of Initial Temperature of a Cylindrical Steel Block on Heat Transfer Characteristics of Staggered Array Jets During Water Jet Quenching. Heat Transfer Engineering, 2015, 36, 1037-1045.	1.9	12
28	Effect of Cooling Water Temperature on Impinging Jet Heat Transfer on Hot Steel Plate., 2011,,.		0
29	Effect of Water Temperature on Spray Cooling Heat Transfer on Hot Steel Plate. , 2010, , .		1
30	Role of Surface Roughness in Water Spray Cooling Heat Transfer of Hot Steel Plate. ISIJ International, 2009, 49, 1920-1925.	1.4	10
31	Enhancement of Droplet Heat Transfer Using Dissolved Gases. , 2002, , .		2
32	Time- and space-resolved heat transfer characteristics of single droplet cooling using microscale heater arrays. International Journal of Heat and Fluid Flow, 2001, 22, 188-200.	2.4	32
33	The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet. International Journal of Heat and Mass Transfer, 2000, 43, 555-575.	4.8	113
34	The effect of nozzle configuration on stagnation region heat transfer enhancement of axisymmetric jet impingement. International Journal of Heat and Mass Transfer, 2000, 43, 3497-3509.	4.8	156