
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11035886/publications.pdf Version: 2024-02-01

RAKESH CHDTA

#	Article	IF	CITATIONS
1	Profit analysis of two-unit priority standby system with administrative delay in repair. International Journal of Systems Science, 1989, 20, 1703-1712.	3.7	33
2	Two unit cold standby system with correlated failures and repairs. International Journal of Systems Science, 1992, 23, 379-391.	3.7	25
3	Cost analysis of a two unit priority standby system with imperfect switch and arbitrary distributions. Microelectronics Reliability, 1985, 25, 65-69.	0.9	22
4	Cost analysis of a two unit cold standby system under different weather conditions. Microelectronics Reliability, 1985, 25, 655-659.	0.9	19
5	A multistate system with two repair distributions. Microelectronics Reliability, 1983, 23, 337-340.	0.9	16
6	Cost analysis of a two-unit cold standby system with two types of operation and repair. Microelectronics Reliability, 1985, 25, 71-75.	0.9	16
7	A two-unit priority standby system subject to random shocks and Releigh failure-time distribution. Microelectronics Reliability, 1992, 32, 1713-1723.	0.9	16
8	Analysis of a two-unit standby system with three modes and imperfect switching device. Microelectronics Reliability, 1984, 24, 425-429.	0.9	15
9	Profit analysis of a cold standby system with two repair distributions. Microelectronics Reliability, 1985, 25, 467-472.	0.9	14
10	A single unit multicomponent system subject to various types of failures. Microelectronics Reliability, 1983, 23, 813-816.	0.9	13
11	Cost benefit analysis of a two dissimilar unit cold standby system with Weibull failure and repair laws. International Journal of Systems Assurance Engineering and Management, 2013, 4, 327-334.	1.5	13
12	Analysis of a three-unit redundant system with two types of repair and inspection. Microelectronics Reliability, 1989, 29, 769-773.	0.9	12
13	Analysis of a two-unit cold standby system with three modes. Microelectronics Reliability, 1983, 23, 1041-1044.	0.9	11
14	Availability analysis of a two-unit cold standby system with two switching failure modes. Microelectronics Reliability, 1984, 24, 419-423.	0.9	11
15	Cost analysis of a system with partial failure mode and abnormal weather conditions. Microelectronics Reliability, 1985, 25, 461-466.	0.9	11
16	Cost analysis of a three-unit standby system subject to random shocks and linearly increasing failure rates. Reliability Engineering and System Safety, 1991, 33, 249-263.	5.1	11
17	Profit analysis of a two-unit cold standby system with abnormal weather condition. Microelectronics Reliability, 1991, 31, 1-5.	0.9	11
18	Profit analysis of a two-unit priority standby system subject to degradation. International Journal of Systems Science, 1991, 22, 61-72.	3.7	11

#	Article	IF	CITATIONS
19	A single server multi-component two-unit cold standby system with inspection and imperfect switching device. Microelectronics Reliability, 1986, 26, 873-877.	0.9	10
20	Cost analysis of a two-unit standby system with delayed replacement and better utilization of units. Microelectronics Reliability, 1985, 25, 81-86.	0.9	9
21	Two-unit redundant system with inspection and adjustable rates. Microelectronics Reliability, 1991, 31, 11-14.	0.9	9
22	Cost-benefit analysis of a multi-component standby system with inspection and slow switch. Microelectronics Reliability, 1986, 26, 879-882.	0.9	8
23	Cost-benefit analysis of a single server three-unit redundant system with inspection, delayed replacement and two types of repair. Microelectronics Reliability, 1986, 26, 247-253.	0.9	7
24	Profit evaluation of a two unit cold standby system with random change in units. International Journal of Systems Science, 1992, 23, 367-377.	3.7	7
25	A two dissimilar unit multi-component system with correlated failures and repairs. Microelectronics Reliability, 1997, 37, 845-849.	0.9	7
26	A two-non-identical-unit parallel system with correlated lifetimes. International Journal of Systems Science, 1999, 30, 1123-1129.	3.7	7
27	Reliability analysis of multi-unit cold standby system with two operating modes. Microelectronics Reliability, 1983, 23, 1045-1050.	0.9	6
28	A multi-standby multi-failure mode system with repair and replacement policy. Microelectronics Reliability, 1983, 23, 809-812.	0.9	6
29	Reliability analysis of a satellite-based computer communication network system. Microelectronics Reliability, 1993, 33, 119-126.	0.9	6
30	Probabilistic analysis of a two-unit cold standby system with two-phase repair and preventive maintenance. Microelectronics Reliability, 1986, 26, 13-18.	0.9	5
31	Profit analysis of a two-unit cold standby system with varying physical conditions of the repairman. Microelectronics Reliability, 1990, 30, 655-660.	0.9	5
32	Cost-benefit analysis of two-unit parallel system with administrative delay in repair. International Journal of Systems Science, 1990, 21, 1369-1379.	3.7	5
33	Analysis of a standby system with dependent repair time and slow switching device. Microelectronics Reliability, 1994, 34, 383-386.	0.9	5
34	A two-unit system with correlated failures and repairs, and random appearance and disappearance of repairman. International Journal of Systems Science, 1996, 27, 561-566.	3.7	5
35	On the profit comparison of two stochastic models each pertaining to a two-unit standby system with fixed preparation time and hyperexponential repair time distributions. International Journal of Systems Science, 1999, 30, 1309-1317.	3.7	5
36	A multicomponent two-unit cold standby system with three modes. Microelectronics Reliability, 1983, 23, 799-803.	0.9	4

#	Article	IF	CITATIONS
37	Profit analysis of a two-unit standby system with two types of repair and preventive maintenance. Microelectronics Reliability, 1986, 26, 435-441.	0.9	4
38	Profit analysis of two-unit priority standby system with rest period of the operator. Microelectronics Reliability, 1990, 30, 649-654.	0.9	4
39	Analysis of a two-unit cold standby system with degradation and linearly increasing failure rates. International Journal of Systems Science, 1991, 22, 2329-2338.	3.7	4
40	Profit analysis of a two-unit priority standby system subject to degradation and random shocks. Microelectronics Reliability, 1993, 33, 1073-1079.	0.9	4
41	Analysis of a two-unit standby system with fixed allowed down time and truncated exponential lifetime distributions. Reliability Engineering and System Safety, 1994, 44, 119-124.	5.1	4
42	Analysis of a two unit standby system with preparation time and correlated failures and repairs. Microelectronics Reliability, 1995, 35, 1163-1165.	0.9	4
43	Cost-Benefit Analysis of a 2-Unit Warm-Standby System with Inspection, Repair, and Post Repair. IEEE Transactions on Reliability, 1986, 35, 70-70.	3.5	3
44	Analysis of a 1-Server, 3-Unit, Redundant System with Inspection and Delayed Replacement. IEEE Transactions on Reliability, 1986, 35, 606-610.	3.5	3
45	Cost-benefit analysis of two-unit cold standby system with the provision of rest to a unit. International Journal of Systems Science, 1990, 21, 1451-1462.	3.7	3
46	Profit analysis of a two multi-component unit standby system with MRT. Microelectronics Reliability, 1991, 31, 7-10.	0.9	3
47	Profit analysis of a trichotomous system. Reliability Engineering and System Safety, 1992, 37, 39-44.	5.1	3
48	Cost benefit analysis of a complex system with correlated failures and repairs. Microelectronics Reliability, 1993, 33, 2281-2284.	0.9	3
49	Stochastic analysis of a priority unit standby system with repair machine failure. International Journal of Systems Science, 1995, 26, 2435-2440.	3.7	3
50	Stochastic analysis of a twoâ€unit cold standby system with maximum repair time and correlated failures and repairs. Journal of Quality in Maintenance Engineering, 1996, 2, 66-76.	1.0	3
51	Cost-benefit analysis of a multi-unit parallel trichotomous system with random shocks. Microelectronics Reliability, 1996, 36, 701-706.	0.9	3
52	A two dissimilar unit parallel system with two phase repair by skilled and ordinary repairmen. International Journal of Systems Assurance Engineering and Management, 2014, 5, 554-561.	1.5	3
53	Cost-benefit analysis of a one-server two-unit standby system subject to imperfect switching device, random inspection and k-failure modes. Microelectronics Reliability, 1986, 26, 7-11.	0.9	2
54	Profit function analysis of system with mixture of warm and cold standby. International Journal of Systems Science, 1990, 21, 1577-1587.	3.7	2

#	Article	IF	CITATIONS
55	CHE failure in a two-unit standby system with slow switch, repair and post repair. Microelectronics Reliability, 1991, 31, 219-222.	0.9	2
56	Comparison of two stochastic models for two-unit series system with cold standbys. Microelectronics Reliability, 1991, 31, 1105-1111.	0.9	2
57	Analysis of a multiunit solar energy system model. Microelectronics Reliability, 1993, 33, 1461-1465.	0.9	2
58	A cold standby system with arrival time of server and correlated failures and repairs. Microelectronics Reliability, 1995, 35, 739-742.	0.9	2
59	A two-unit duplicating standby system with correlated failure-repair/vbreplacement times. Microelectronics Reliability, 1996, 36, 517-523.	0.9	2
60	Operating orbit system with two dissimilar units and corresponding standby. International Journal of Systems Science, 1990, 21, 495-501.	3.7	1
61	A single-server two-unit warm standby system with n failure modes, fault detection and inspection. Microelectronics Reliability, 1991, 31, 841-845.	0.9	1
62	Analysis of a complex system composed of two sub-systems with their standbys. Microelectronics Reliability, 1991, 31, 453-463.	0.9	1
63	Cost analysis of a two-unit chargeable standby system with interchangeable units and two types of failure. Microelectronics Reliability, 1992, 32, 775-779.	0.9	1
64	A two-unit system subject to a partial-failure mode and gamma repair-time distribution. Microelectronics Reliability, 1993, 33, 2277-2280.	0.9	1
65	A multi-component standby system subject to inspection and truncated normal failure time distribution. Microelectronics Reliability, 1993, 33, 127-131.	0.9	1
66	Profit analysis of a system with two-units having guarantee periods and delayed operation of standby. Microelectronics Reliability, 1994, 34, 1387-1390.	0.9	1
67	Cost-benefit analysis of a two-unit standby system with a proviso of repair-machine failure. Microelectronics Reliability, 1994, 34, 1391-1394.	0.9	1
68	Costâ€benefit analysis of a complex system with correlated failures and repairs. Journal of Quality in Maintenance Engineering, 1996, 2, 50-59.	1.0	1
69	Costâ€benefit analysis of a twoâ€unit standby system with postâ€repair, activation time and correlated failures and repairs. Journal of Quality in Maintenance Engineering, 1997, 3, 55-63.	1.0	1
70	Analysis of a system having super-priority, priority and ordinary units with arbitrary distributions. Microelectronics Reliability, 1997, 37, 851-856.	0.9	1
71	Profit analysis of a system with mutual changeover of units and correlated failures and repairs. Journal of Quality in Maintenance Engineering, 1999, 5, 128-140.	1.0	1
72	Analysis of Stochastic Models in Manufacturing Systems Pertaining to Repair Machine Failure. , 2019, , 7-1-7-50.		1

#	Article	IF	CITATIONS
73	Availability analysis of a four-state Markov system. International Journal of Systems Science, 1984, 15, 977-982.	3.7	0
74	Stochastic analysis of a multi-unit cold standby system working in orbit form. Microelectronics Reliability, 1990, 30, 845-850.	0.9	0
75	Cost-benefit analysis of a one-unit system with n degraded states due to random shocks. International Journal of Systems Science, 1991, 22, 2339-2346.	3.7	0
76	A stochastic model of a system with two phases of operation. Microelectronics Reliability, 1992, 32, 799-803.	0.9	0
77	Stochastic analysis of a fault tolerant network system. Microelectronics Reliability, 1993, 33, 303-306.	0.9	0
78	Comparison of two stochastic alternative phase models. Microelectronics Reliability, 1993, 33, 501-507.	0.9	0
79	Profit analysis of a two-unit man-machine system with random appearance and disappearance of the operator. Microelectronics Reliability, 1994, 34, 1133-1136.	0.9	0
80	A two-unit system with allowed down time and random check of standby. Microelectronics Reliability, 1994, 34, 1381-1385.	0.9	0
81	An operating orbit system with two dissimilar units and corresponding standbys. Journal of Statistics and Management Systems, 2008, 11, 65-76.	0.3	0